Advertisement

Journal of Human Genetics

, Volume 52, Issue 10, pp 848–855 | Cite as

Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan: a study of 113 Japanese families

  • Rehana Basri
  • Ichiro Yabe
  • Hiroyuki Soma
  • Hidenao Sasaki
Original Article

Abstract

Autosomal dominant cerebellar ataxia (ADCA) is a genetically heterogeneous group of neurodegenerative disorders. To shed further light on the clinical and genetic spectrum of ADCA in Japan, we conducted a study to determine the frequency of a new variety of different subtypes of SCAs among ADCA patients. This current study was carried out from April 1999 to December 2006 on the basis of patients with symptoms and signs of ADCA disorders. PCR and/or direct sequencing were evaluated in a total of 113 families. Among them, 35 families were found to have the mutation associated with SCA6, 30 with SCA3, 11 with SCA1, five with SCA2, five with DRPLA, and one with SCA14. We also detected the heterozygous −16C → T single nucleotide substitution within the puratrophin-1 gene responsible for 16q22.1-linked ADCA in ten families. In this study, unusual varieties of SCA, including 27, 13, 5, 7, 8, 12, 17, and 16 were not found. Of the 113 patients, 14% had as yet unidentified ADCA mutations. The present study validates the prevalence of genetically distinct ADCA subtypes based on ethnic origin and geographical variation, and shows that 16q-linked ADCA has strong hereditary effects in patients with ADCAs in Japan.

Keywords

Autosomal dominant cerebellar ataxia SCA6 SCA3 16q-linked ADCA 

Notes

Acknowledgments

We are very grateful to all the patients and their families for their willingness to participate in this study. This work was partly supported by a Grant-in-Aid for the “Research Committee for Ataxic Diseases” of the Research on Measures for Intractable Diseases from the Ministry of Health, Welfare and Labour, Japan, by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan and by a Grant from the Kanae Foundation.

References

  1. Alonso I, Costa C, Gomes A, Ferro A, Seixas AI, Silva S, Cruz VT, Coutinho P, Sequeiros J, Silveira I (2005) A novel H101Q mutation causes PKC gamma loss in spinocerebellar ataxia type 14. J Hum Genet 50:523–529PubMedCrossRefGoogle Scholar
  2. Bahl S, Virdi K, Mittal U, Sachdeva MP, Kalla AK, Holmes SE, O’Hearn E, Margolis RL, Jain S, Srivastava AK, Mukerji M (2005) Evidence of a common founder for SCA12 in the Indian population. Ann Hum Genet 69:528–534PubMedCrossRefGoogle Scholar
  3. Brkanac Z, Fernandez M, Matsushita M, Lipe H, Wolff J, Bird TD, Raskind WH (2002) Autosomal dominant sensory/motor neuropathy with ataxia (SMNA): linkage to chromosome 7q22- q32. Am J Med Genet 114:450–457PubMedCrossRefGoogle Scholar
  4. Brunetti-Pierri N, Wilfong AA, Hunter JV, Craigen WJ (2006) A severe case of dentatorubro-pallidoluysian atrophy (DRPLA) with microcephaly, very early onset of seizures, and cerebral white matter involvement. Neuropediatrics 37:308–311PubMedCrossRefGoogle Scholar
  5. Burk K, Zuhlke C, Konig IR, Ziegler A, Schwinger E, Globas C, Dichgans J, Hellenbroich Y (2004) Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology 62:327–329PubMedGoogle Scholar
  6. Cagnoli C, Mariotti C, Taroni F, Seri M, Brussino A, Michielotto C, Grisoli M, Di Bella D, Migone N, Gellera C, Di Donato S, Brusco A (2006) SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 129:235–242PubMedCrossRefGoogle Scholar
  7. Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D, Matsushita M, Lipe H, Wolff J, Fernandez M, Cimino PJ, Bird TD, Raskind WH (2003) Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet 72:839–849PubMedCrossRefGoogle Scholar
  8. Chung MY, Lu YC, Cheng NC, Soong BW (2003) A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain 126:1293–1299PubMedCrossRefGoogle Scholar
  9. Dalski A, Atici J, Kreuz FR, Hellenbroich Y, Schwinger E, Zuhlke C (2005) Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Eur J Hum Genet 13:118–120PubMedCrossRefGoogle Scholar
  10. Dalski A, Mitulla B, Burk K, Schattenfroh C, Schwinger E, Zuhlke C (2006) Mutation of the highly conserved cysteine residue 131 of the SCA14 associated PRKCG gene in a family with slow progressive cerebellar ataxia. J Neurol 253:1111–1112PubMedCrossRefGoogle Scholar
  11. David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65–70PubMedCrossRefGoogle Scholar
  12. Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI (2004) Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 63:2288–2292PubMedGoogle Scholar
  13. Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357–1370PubMedCrossRefGoogle Scholar
  14. Espay AJ, Bergeron C, Chen R, Lang AE (2006) Rapidly progressive sporadic dentatorubral pallidoluysian atrophy with intracytoplasmic inclusions and no CAG repeat expansion. Mov Disord 21:2251–2254PubMedCrossRefGoogle Scholar
  15. Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, Kaplan C, Ptacek LJ (1996) Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 59:392–399PubMedGoogle Scholar
  16. Gardner RJ, Knight MA, Hara K, Tsuji S, Forrest SM, Storey E (2005) Spinocerebellar ataxia type 15. Cerebellum 4:47–50PubMedCrossRefGoogle Scholar
  17. Harding AE (1993) Clinical features and classification of inherited ataxias. Adv Neurol 61:1–14PubMedGoogle Scholar
  18. Herman-Bert A, Stevanin G, Netter JC, Rascol O, Brassat D, Calvas P, Camuzat A, Yuan Q, Schalling M, Durr A, Brice A (2000) Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet 67:229–235PubMedCrossRefGoogle Scholar
  19. Hirano R, Takashima H, Okubo R, Tajima K, Okamoto Y, Ishida S, Tsuruta K, Arisato T, Arata H, Nakagawa M, Osame M, Arimura K (2004) Fine mapping of 16q-linked autosomal dominant cerebellar ataxia type III in Japanese families. Neurogenetics 5:215–221PubMedCrossRefGoogle Scholar
  20. Hiramoto K, Kawakami H, Inoue K, Seki T, Maruyama H, Morino H, Matsumoto M, Kurisu K, Sakai N (2006) Identification of a new family of spinocerebellar ataxia type 14 in the Japanese spinocerebellar ataxia population by the screening of PRKCG exon 4. Mov Disord 21:1355–1360PubMedCrossRefGoogle Scholar
  21. Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL (1999) Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet 23:391–392PubMedCrossRefGoogle Scholar
  22. Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Durr A, Zuhlke C, Burk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38:184–190PubMedCrossRefGoogle Scholar
  23. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14:285–291PubMedCrossRefGoogle Scholar
  24. Ishikawa K, Toru S, Tsunemi T, Li M, Kobayashi K, Yokota T, Amino T, Owada K, Fujigasaki H, Sakamoto M, Tomimitsu H, Takashima M, Kumagai J, Noguchi Y, Kawashima Y, Ohkoshi N, Ishida G, Gomyoda M, Yoshida M, Hashizume Y, Saito Y, Murayama S, Yamanouchi H, Mizutani T, Kondo I, Toda T, Mizusawa H (2005) An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5′ untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet 77:280–296PubMedCrossRefGoogle Scholar
  25. Jin DK, Oh MR, Song SM, Koh SW, Lee M, Kim GM, Lee WY, Chung CS, Lee KH, Im JH, Lee MJ, Kim JW, Lee MS (1999) Frequency of spinocerebellar ataxia types 1,2,3,6,7 and dentatorubral pallidoluysian atrophy mutations in Korean patients with spinocerebellar ataxia. J Neurol 246:207–210PubMedCrossRefGoogle Scholar
  26. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumia S, Kakizuka A (1994) CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228PubMedCrossRefGoogle Scholar
  27. Klebe S, Durr A, Rentschler A, Hahn-Barma V, Abele M, Bouslam N, Schols L, Jedynak P, Forlani S, Denis E, Dussert C, Agid Y, Bauer P, Globas C, Wullner U, Brice A, Riess O, Stevanin G (2005) New mutations in protein kinase Cgamma associated with spinocerebellar ataxia type 14. Ann Neurol 58:720–729PubMedCrossRefGoogle Scholar
  28. Knight MA, Gardner RJ, Bahlo M, Matsuura T, Dixon JA, Forrest SM, Storey E (2004) Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 127:1172–1181PubMedCrossRefGoogle Scholar
  29. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral pallidoluysian atrophy (DRPLA). Nat Genet 6:9–13PubMedCrossRefGoogle Scholar
  30. Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21:379–384PubMedCrossRefGoogle Scholar
  31. Li M, Ishikawa K, Toru S, Tomimitsu H, Takashima M, Goto J, Takiyama Y, Sasaki H, Imoto I, Inazawa J, Toda T, Kanazawa I, Mizusawa H (2003) Physical map and haplotype analysis of 16q-linked autosomal dominant cerebellar ataxia (ADCA) type III in Japan. Hum Genet 48:111–118Google Scholar
  32. Maruyama H, Izumi Y, Morino H, Oda M, Toji H, Nakamura S, Kawakami H (2002) Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. Am J Med Genet 114:578–583PubMedCrossRefGoogle Scholar
  33. Matsumura R, Futamura N, Ando N, Ueno S (2003) Frequency of spinocerebellar ataxia mutations in the Kinki district of Japan. Acta Neurol Scand 107:38–41PubMedCrossRefGoogle Scholar
  34. Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26:191–194PubMedCrossRefGoogle Scholar
  35. Miura S, Shibata H, Furuya H, Ohyagi Y, Osoegawa M, Miyoshi Y, Matsunaga H, Shibata A, Matsumoto N, Iwaki A, Taniwaki T, Kikuchi H, Kira J, Fukumaki Y (2006) The CNTN4 gene locus at 3p26 is a candidate gene of SCA16. Neurology 67:1236–1241PubMedCrossRefGoogle Scholar
  36. Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, Furuya H, Yamamoto K, Sakai K, Sasazuki T, Kira J (2001) A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1–24.1. Neurology 57:96–100PubMedGoogle Scholar
  37. Mizusawa H, Ishikawa K, Toru S, Li M (2004) The prevalence and clinical features of 16q-linked autosomal dominant cerebellar ataxia (ADCA) type III in Japan. Annual report of the Research Committee of Ataxic Disease, Research on specific disease. The Ministry of Health, Labour, and Welfare of Japan, pp 67–70 (In Japanese)Google Scholar
  38. Morita H, Yoshida K, Suzuki K, Ikeda S (2006) A Japanese case of SCA14 with the Gly128Asp mutation. J Hum Genet 51:1118–1121PubMedCrossRefGoogle Scholar
  39. Nagafuchi S, Yanagisawa H, Ohsaki E, Shirayama T, Tadokoro K, Inoue T, Yamada M (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 8:177–182PubMedCrossRefGoogle Scholar
  40. Nagaoka U, Takashima M, Ishikawa K, Yoshizawa K, Yoshizawa T, Ishikawa M, Yamawaki T, Shoji S, Mizusawa H (2000) A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 54:1971–1975PubMedGoogle Scholar
  41. Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441–1448PubMedCrossRefGoogle Scholar
  42. Nozaki H, Ikeuchi T, Kawakami A, Kimura A, Koide R, Tsuchiya M, Nakmura Y, Mutoh T, Yamamoto H, Nakao N, Sahashi K, Nishizawa M, Onodera O (2007) Clinical and genetic characterizations of 16q-linked autosomal dominant spinocerebellar ataxia (AD-SCA) and frequency analysis of AD-SCA in the Japanese population. Mov Disord 22:857–862PubMedCrossRefGoogle Scholar
  43. Ohata T, Yoshida K, Sakai H, Hamanoue H, Mizuguchi T, Shimizu Y, Okano T, Takada F, Ishikawa K, Mizusawa H, Yoshiura K, Fukushima Y, Ikeda S, Matsumoto N (2006) A −16C>T substitution in the 5’ UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in Nagano. J Hum Genet 51:461–466PubMedCrossRefGoogle Scholar
  44. Onodera Y, Aoki M, Mizuno H, Warita H, Shiga Y, Itoyama Y (2006) Clinical features of chromosome 16q22.1 linked autosomal dominant cerebellar ataxia in Japanese. Neurology 67:1300–1302PubMedCrossRefGoogle Scholar
  45. Onodera Y, Aoki M, Tsuda T, Kato H, Nagata T, Kameya T, Abe K, Itoyama Y (2000) High prevalence of spinocerebellar ataxia type 1 (SCA1) in an isolated region of Japan. J Neurol Sci 178:153–158PubMedCrossRefGoogle Scholar
  46. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226PubMedCrossRefGoogle Scholar
  47. Ouyang Y, Sakoe K, Shimazaki H, Namekawa M, Ogawa T, Ando Y, Kawakami T, Kaneko J, Hasegawa Y, Yoshizawa K, Amino T, Ishikawa K, Mizusawa H, Nakano I, Takiyama Y (2006) 16q-linked autosomal dominant cerebellar ataxia: a clinical and genetic study. J Neurol Sci 247:180–186PubMedCrossRefGoogle Scholar
  48. Owada K, Ishikawa K, Toru S, Ishida G, Gomyoda M, Tao O, Noguchi Y, Kitamura K, Kondo I, Noguchi E, Arinami T, Mizusawa H (2005) A clinical, genetic, and neuropathologic study in a family with 16q-linked ADCA type III. Neurology 65:629–632PubMedCrossRefGoogle Scholar
  49. Ranum LP, Schut LJ, Lundgren JK, Orr HT, Livingston DM (1994) Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 8:280–284PubMedCrossRefGoogle Scholar
  50. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10: 10–17CrossRefGoogle Scholar
  51. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14:277–284PubMedCrossRefGoogle Scholar
  52. Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning-a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  53. Sasaki H, Yabe I, Tashiro K (2003) The hereditary spinocerebellar ataxias in Japan. Cytogenet Genome Res 100:198–205PubMedCrossRefGoogle Scholar
  54. Sasaki H, Yabe I, Yamashita I, Tashiro K (2000) Prevalence of triplet repeat expansion in ataxia patients from Hokkaido, the northernmost island of Japan. J Neurol Sci 175:45–51PubMedCrossRefGoogle Scholar
  55. Shimizu Y, Yoshida K, Okano T, Ohara S, Hashimoto T, Fukushima Y, Ikeda S (2004) Regional features of autosomal-dominant cerebellar ataxia in Nagano: clinical and molecular genetic analysis of 86 families. J Hum Genet 49:610–616PubMedCrossRefGoogle Scholar
  56. Stevanin G, Herman A, Brice A, Durr A (1999) Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology 53:1355–1357PubMedGoogle Scholar
  57. Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A, Schalling M, Broussolle E, Durr A, Brice A (2004) Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 55:97–104PubMedCrossRefGoogle Scholar
  58. Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ, Forrest SM, Biros I, Nicholson GA (2000) Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet 95:351–357PubMedCrossRefGoogle Scholar
  59. Swartz BE, Burmeister M, Somers JT, Rottach KG, Bespalova IN, Leigh RJ (2002) A form of inherited cerebellar ataxia with saccadic intrusions, increased saccadic speed, sensory neuropathy, and myoclonus. Ann N Y Acad Sci 956:441–444PubMedCrossRefGoogle Scholar
  60. Takashima M, Ishikawa K, Nagaoka U, Shoji S, Mizusawa H (2001) A linkage disequilibrium at the candidate gene locus for 16q-linked autosomal dominant cerebellar ataxia type III in Japan. J Hum Genet 46:167–171PubMedCrossRefGoogle Scholar
  61. Teive HA, Roa BB, Raskin S, Fang P, Arruda WO, Neto YC, Gao R, Werneck LC, Ashizawa T (2004) Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology 63:1509–1512PubMedGoogle Scholar
  62. van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de Graaf R, de Koning I, Maat-Kievit A, Leegwater P, Dooijes D, Oostra BA, Heutink P (2003) A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia. Am J Hum Genet 72:191–199PubMedCrossRefGoogle Scholar
  63. Verbeek DS, Schelhaas JH, Ippel EF, Beemer FA, Pearson PL, Sinke RJ (2002) Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet 111:388–393PubMedCrossRefGoogle Scholar
  64. Verbeek DS, Warrenburg BP, Hennekam FA, Dooijes D, Ippel PF, Verschuuren-Bemelmans CC, Kremer HP, Sinke RJ (2005) Gly118Asp is a SCA14 founder mutation in the Dutch ataxia population. Hum Genet 117:88–91PubMedCrossRefGoogle Scholar
  65. Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ (2004) Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13–12.3. Brain 127:2551–2557PubMedCrossRefGoogle Scholar
  66. Vlak MH, Sinke RJ, Rabelink GM, Kremer BP, van de Warrenburg BP (2006) Novel PRKCG/SCA14 mutation in a Dutch spinocerebellar ataxia family: expanding the phenotype. Mov Disord 21:1025–1028PubMedCrossRefGoogle Scholar
  67. Vuillaume I, Devos D, Schraen-Maschke S, Dina C, Lemainque A, Vasseur F, Bocquillon G, Devos P, Kocinski C, Marzys C, Destee A, Sablonniere B (2002) A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol 52:666–670PubMedCrossRefGoogle Scholar
  68. Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D, Mock AF, Evidente VG, Fee DB, Muller U, Durr A, Brice A, Papazian DM, Pulst SM (2006) Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central Nervous system phenotypes. Nat Genet 38:447–451PubMedCrossRefGoogle Scholar
  69. Waters MF, Fee D, Figueroa KP, Nolte D, Muller U, Advincula J, Coon H, Evidente VG, Pulst SM (2005) An autosomal dominant ataxia maps to 19q13: Allelic heterogeneity of SCA13 or novel locus? Neurology 65:1111–1113PubMedCrossRefGoogle Scholar
  70. Wieczorek S, Arning L, Alheite I, Epplen JT (2006) Mutations of the puratrophin-1 (PLEKHG4) gene on chromosome 16q22.1 are not a common genetic cause of cerebellar ataxia in a European population. J Hum Genet 51:363–367PubMedCrossRefGoogle Scholar
  71. Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW (1999) Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14–21.3. Am J Hum Genet 65:420–426PubMedCrossRefGoogle Scholar
  72. Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, Tsuji S, Kikuchi S, Tashiro K (2003) Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol 12:1749–1751CrossRefGoogle Scholar
  73. Yabe I, Sasaki H, Matsuura T, Takada A,Wakisaka A, Suzuki Y, Fukazawa T, Hamada T, Oda T, Ohnishi A, Tashiro K (1998) SCA6 mutation analysis in a large cohort of the Japanese patients with late-onset pure cerebellar ataxia. J Neurol Sci 156:89–95PubMedCrossRefGoogle Scholar
  74. Yamashita I, Sasaki H, Yabe I, Fukazawa T, Nogoshi S, Komeichi K, Takada A, Shiraishi K, Takiyama Y, Nishizawa M, Kaneko J, Tanaka H, Tsuji S, Tashiro K (2000) A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol 48:156–163PubMedCrossRefGoogle Scholar
  75. Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM (2005) Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 57:349–354PubMedCrossRefGoogle Scholar
  76. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1Avoltage-dependent calcium channel. Nat Genet 15:62–69PubMedCrossRefGoogle Scholar
  77. Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247PubMedCrossRefGoogle Scholar

Copyright information

© The Japan Society of Human Genetics and Springer 2007

Authors and Affiliations

  • Rehana Basri
    • 1
  • Ichiro Yabe
    • 1
  • Hiroyuki Soma
    • 1
  • Hidenao Sasaki
    • 1
  1. 1.Department of Neurology, Graduate School of MedicineHokkaido UniversitySapporoJapan

Personalised recommendations