Jahrbuch für Regionalwissenschaft

, Volume 31, Issue 1, pp 11–25 | Cite as

Measuring spatial co-agglomeration patterns by extending ESDA techniques

Original Paper

Abstract

An emerging topic in spatial statistics is the analysis of agglomerations within a regional context. Often, these ‘spatial clusters’ are formed by effects of spatial co-agglomeration. This article introduces an extended bivariate Moran’s I statistic in a case study of German furniture industries. It allows to jointly account for the clustering of two different industries. The method is integrated into the context of Exploratory Spatial Data Analyses. Results show that the approach is a suitable tool for the detection and delineation of co-agglomerations in space by adding self-inclusion of cluster cores and by offering measures of statistical significance.

Keywords

Spatial clustering Coagglomeration Bivariate Moran’s I Exploratory spatial data analysis 

JEL Classification

C21 L73 R12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar F (2008) Effect of centrifugal forces on cluster patterns in the softwood lumber industry of the United States. For Sci 54(4):242–249 Google Scholar
  2. Aldstadt J, Getis A (2006) Using AMOEBA to create a spatial weights matrix and identify spatial clusters. Geogr Anal 38:327–343 CrossRefGoogle Scholar
  3. Alecke B, Alsleben C, Scharr F, Untiedt G (2006) Are there really high-tech clusters? The geographic concentration of German manufacturing industries and its determinants. Ann Reg Sci 40(1):19–42 CrossRefGoogle Scholar
  4. Anselin L (1988) Spatial econometrics: methods and models. Kluwer Academic, Dordrecht Google Scholar
  5. Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115 CrossRefGoogle Scholar
  6. Anselin L, Syabri I, Smirnov O (2002) Visualizing multivariate spatial correlation with dynamically linked windows. Working paper. University of Illinois, Urbana-Champaign, Spatial Analysis Laboratory (SAL), Urbana, IL. http://sal.uiuc.edu/users/anselin/papers/multi_lisa.pdf, Oct 2007
  7. Arbia G (2001) The role of spatial effects in the empirical analysis of regional concentration. J Geogr Syst 3:271–281 CrossRefGoogle Scholar
  8. Baumont C, Ertur C, Le Gallo J (2003) Spatial analysis of employment and population density: the case of the agglomeration of Dijon 1999. Geogr Anal 36(2):146–176 CrossRefGoogle Scholar
  9. Bickenbach F, Bode E (2008) Disproportionality measures of concentration, specialization, and localization. Int Reg Sci Rev 31(4):359–388 CrossRefGoogle Scholar
  10. Bivand R, Pebesma E, Gómez-Rubio V (2008) Applied spatial data analysis with R. Use R series. Springer, New York Google Scholar
  11. Bode E (2008) Delineating metropolitan areas using land prices. J Reg Sci 48(1):131–163 CrossRefGoogle Scholar
  12. Bonkamp O (2005) Kooperationen und Netzwerke in der Möbelindustrie der Region Ostwestfalen-Lippe. (Cooperation and networks of the furniture industry in the Eastern Westphalia region). Academic dissertation, Universität Paderborn, Fakultät für Wirtschaftswissenschaften Google Scholar
  13. Brenner T (2004) Local industrial clusters: Existence, emergence and evolution. In: Studies in global competition series, vol 20. Routledge, London Google Scholar
  14. Bröcker J, Dohse D, Soltwedel R (eds) (2003) Innovation clusters and interregional competition. Advances in spatial economics series. Springer, Berlin Google Scholar
  15. Bundesagentur für Arbeit (2007) Statistik der sozialversicherungspflichtig Beschäftigten. Spezifische Datenabfrage auf Anfrage (in German) (Federal Employment Agency – Statistics of employees with social insurance registration. Specific data queries on demand). Nürnberg Google Scholar
  16. Dall’erba S (2005) Distribution of regional income and regional funds in Europe 1989–1999: An exploratory spatial data analysis. Ann Reg Sci 39:121–148 CrossRefGoogle Scholar
  17. Das S, Finne H (2008) Innovation and co-location. Spatial Econ Anal 3(2):159–194 CrossRefGoogle Scholar
  18. De Dominicis L, Arbia G, Groot H (2007) The spatial distribution of economic activities in Italy. Tinbergen Institute Discussion Paper, TI 2007–094/3 Google Scholar
  19. Duranton G, Overman H (2005) Testing for localization using micro-geographic data. Rev Econ Stud 72:1077–1106 CrossRefGoogle Scholar
  20. Duranton G, Puga D (2004) Micro-Foundations of urban agglomeration economies. In: Henderson J, Thisse J (eds) Handbook of regional and urban economics, vol 4, pp 2063–2117 Google Scholar
  21. Ellison G, Glaeser E (1997) Geographic concentration in US manufacturing industries: a dartboard approach. J Polit Econ 105(5):889–927 CrossRefGoogle Scholar
  22. Ellison G, Glaeser E, Kerr W (2007) What causes industry agglomeration? Evidence from coagglomeration patterns. Working paper, MIT, Department of Economics, Cambridge, MA. http://econ-www.mit.edu/files/908, Sep 2007
  23. Enright M (2003) What we know and what we should know. In: Bröcker J, Dohse D, Soltwedel R (eds) Innovation clusters and interregional competition. Springer, Berlin, pp 99–129 Google Scholar
  24. European Commission (1999) Communication on the state of competitiveness of the EU Forest-based and related industries. Communication of the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions. COM (1999) 457. Luxembourg. http://europa.eu.int/comm/enterprise/forest_based/comm_en.pdf, Mai 2006
  25. EUROSTAT – Statistical Office of the European Communities (2002) Statistical classification of economic activities in the European community. Rev. 1.1 (NACE), Metadata, RAMON Classification Server, Luxembourg. http://ec.europa.eu/eurostat/ramon/, Feb 2007
  26. Glaeser E (2008) Cities, agglomeration and spatial equilibrium. Oxford University Press, New York Google Scholar
  27. Graham D (2009) Identifying urbanisation and localisation externalities in manufacturing and service industries. Pap Reg Sci 88(1):63–84 CrossRefGoogle Scholar
  28. Guillain R, Le Gallo J (2006) Measuring agglomeration: an exploratory spatial analysis approach applied to the case of Paris and its surroundings. REAL discussion papers, 06-T-10, University of Illinois, Urbana Champaign, IL Google Scholar
  29. Hazley C (2000) Forest-based and related industries of the European Union. Industrial districts, clusters and agglomerations. ETLA The Research Institute of the Finnish Economy, Taloustieto Oy, Helsinki Google Scholar
  30. Herruzo A, Diaz-Balteiro L, Calvo X (2008) A measure of the geographic concentration in Spain’s wood-based industry. For Prod J 58(8):54–60 Google Scholar
  31. Kies U, Mrosek T, Schulte A (2008) A statistics-based method for cluster analysis of the forest sector at the national and sub-national level in Germany. Scand J For Res 23:445–457 CrossRefGoogle Scholar
  32. Kies U, Mrosek T, Schulte A (2009) Spatial analysis of regional industrial clusters in the German forest sector. Int For Rev 11(1):38–51 Google Scholar
  33. Kiese M, Schätzl L (eds) (2008) Cluster und Regionalentwicklung. Theorie, Beratung und praktische Umsetzung. Verlag Dorothea Rohn, Dortmund (in German). (Cluster and regional development. Theory, extension and practical implementation) Google Scholar
  34. Klein D, Kies U, Schulte A (2009) Regional employment trends of wood-based industries in Germany’s forest cluster: a comparative shift-share analysis of post-reunification development. Eur J For Res 128(3):205–219 Google Scholar
  35. Lafourcade M, Mion G (2007) Concentration, agglomeration and the size of plants. Reg Sci Urban Econ 37(1):46–68 CrossRefGoogle Scholar
  36. Le Gallo J, Ertur C (2003) Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980–1995. Pap Reg Sci 82(4):175–201 CrossRefGoogle Scholar
  37. Litzenberger T (2007) Cluster und die New Economic Geography. Theoretische Konzepte, empirische Tests und Konsequenzen für Regionalpolitik in Deutschland. Volks- und Betriebswirtschaft, vol 3228. Peter Lang, Frankfurt (in German). (Cluster and the new economic geography. Theoretical concepts, empirical tests and consequences for regional policy in Germany) Google Scholar
  38. Longley P, Goodchild M, Maguire D, Rhind D (eds) (2005) Geographical information systems and science, 2nd edn. Wiley, Cambridge Google Scholar
  39. Marcon E, Puech F (2003) Evaluating the geographic concentration of industries using distance-based methods. J Econ Geogr 3(4):409–428 CrossRefGoogle Scholar
  40. Maurel F, Sédillot B (1999) A measure of the geographic concentration in French manufacturing industries. Reg Sci Urban Econ 29(5):575–604 CrossRefGoogle Scholar
  41. Ord J, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(4):286–306 CrossRefGoogle Scholar
  42. Pace K, Gilley O (1997) Using the spatial configuration of the data to improve estimation. J Real Estate Finance Econ 14(3):333–340 CrossRefGoogle Scholar
  43. Parr J (2002a) Agglomeration economies: ambiguities and confusions. Environ Plan A 34:717–731 CrossRefGoogle Scholar
  44. Parr J (2002b) Missing elements in the analysis of agglomeration economies. Int Reg Sci Rev 25(2):151–168 CrossRefGoogle Scholar
  45. Patacchini E, Rice P (2007) Geography and economic performance: exploratory spatial data analysis for Great Britain. Reg Stud 41(4):489–508 CrossRefGoogle Scholar
  46. Porter M (2000) Location, competition, and economic development: local clusters in a global economy. Econ Dev Q 14(1):15–34 CrossRefGoogle Scholar
  47. Reich R, Czaplewski R, Bechthold W (1994) Spatial cross-correlation of undisturbed, natural shortleaf pine stands in northern Georgia. Environ Ecol Stat 1:201–217 CrossRefGoogle Scholar
  48. Rosenthal S, Strange W (2004) Evidence on the nature and sources of agglomeration economies. In: Henderson J, Thisse J (eds) Handbook of regional and urban economics, vol 4, pp 2119–2171 Google Scholar
  49. Rusche K (2008) Quality of life in the regions: an exploratory spatial data analysis for West German labor markets. Rev Reg Sci. doi:10.1007/s10037-009-0042-6 Google Scholar
  50. Storper M, Venables J (2003) Buzz: Face-to-face contact and the urban economy. J Econ Geogr 4(4):351–370 Google Scholar
  51. Ter Wal A, Boschma R (2009) Co-evolution of firms, industries and networks in space. Regional studies. iFirst. doi:10.1080/00343400802662658 Google Scholar
  52. UNECE/FAO – United nations economic commission for Europe and food and agriculture organization (2005) European Forest Sector Outlook Study (EFSOS). Geneva timber and forest study papers, vol 20. Geneva Google Scholar
  53. Wartenberg D (1985) Multivariate spatial correlation: a method for exploratory geographical analysis. Geogr Anal 17(4):263–283 CrossRefGoogle Scholar
  54. Zhu S, Chen Z, Chen D (2007) Bivariate Moran spatial correlation analysis between zonal farm-land use and rural population distribution. In: Weimin J, Shuhe Z (eds) Geoinformatics 2007: remotely sensed data and information. Proceedings of SPIE, vol 6752 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Research Institute for Regional and Urban Development (ILS)DortmundGermany
  2. 2.Wald-Zentrum (Centre of Forest Ecosystems)Westfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations