Advertisement

Jahrbuch für Regionalwissenschaft

, Volume 26, Issue 2, pp 119–145 | Cite as

Optimisation of Infrastructure Location

  • Luis Samaniego
  • Peter Treuner
Original Paper
  • 79 Downloads

Abstract

This paper presents a model aimed at finding an efficient allocation of infrastructure investments in a region. The problem’s complexity is due not only to its combinatorial nature, but also due to the intrinsic multidimensional spatio-temporal relationships of its variables. Furthermore, there is no explicit solution for such NP-complete combinatorial optimisation problem; thus a heuristic optimisation technique such as Simulated Annealing is used to search for ‘‘good’’ solutions in a finite but huge solution space. In this paper, the approach applied in the ‘‘Xuzhou Integrated Settlement and Transportation Planning Project’’, carried out in the People’s Republic of China as a joint venture between the Jiangsu Development Planning Commission (JDPC) and the Institute of Regional Development Planning of the University of Stuttgart (IREUS), is to be presented. This study considered projects in 18 realms of infrastructure, in 115 locations of an administrative unit with about 9 million inhabitants. The results of the study suggest a significant gain in allocation efficiency due to the applied method of optimisation.

Keywords

Infrastructure location Combinatorial optimisation Simulated annealing 

Zusammenfassung

In dem vorliegenden Beitrag wird ein Modell für die effiziente Allokation von Infrastruktureinrichtungen in einer Region entwickelt. Die Komplexität des Allokationsproblems ergibt sich nicht nur durch die Vielzahl der Kombinationsmöglichkeiten, sondern auch durch die immanenten multidimensionalen Raum-Zeit-Beziehungen der Modellvariablen. Zudem gibt es keine explizite Lösung für solche ,,NP-complete‘‘-kombinatorischen Optimierungsprobleme. Daher wird ein heuristisches Optimierungsverfahren wie das Simulated Annealing genutzt, um eine ,,gute‘‘ Lösung in einem endlichen, aber sehr großen Lösungsraum zu finden. In diesem Beitrag wird der Ansatz vorgestellt, der im Rahmen des Forschungsprojekts ,,Xuzhou Integrated Settlement and Transportation Project‘‘ – ein in der Volksrepublik China durchgeführtes Gemeinschaftsprojekt der Jiangsu Development Planning Commission (JDPC) und des Instituts für Raumordnung und Entwicklungsplanung der Universität Stuttgart (IREUS) – entwickelt und angewendet wurde. Die Studie berücksichtigte Infrastrukturprojekte aus 18 Bereichen in 115 räumlichen Einheiten in einem Gesamtraum mit ca. 9 Mio. Einwohnern. Die Ergebnisse versprechen eine signifikante Effizienzsteigerung bei der Allokation von Infrastruktureinrichtungen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts E, Korst J (1990) Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley, ChichesterGoogle Scholar
  2. 2.
    Abernathy WJ, Hershey JC (1972) A spatial-allocation model for regional health services planning. Operations Research 20:629–642Google Scholar
  3. 3.
    Bárdossy A, Samaniego L (2002) Fuzzy rule-based classification of remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing 40(2):362–374CrossRefGoogle Scholar
  4. 4.
    Coello CC, Veldhuizen DV, Lamont GB (2002) Evolutionary Algorithms for Solving Multi-objective Problems. Kluwer, New YorkGoogle Scholar
  5. 5.
    Cohon JL, ReVelle CS, Current JR, Eagles T, Eberhartand R, Church RL (1980) Application of a multiobjective facility location model to power plant siting in a six-state region of the US. Computers and Operations Research 7:107–124CrossRefGoogle Scholar
  6. 6.
    Current J, Daskin M, Schilling D (2002) Discrete network location models. In: Drezner Z, Hamacher H (eds) Facility Location Theory: Applications and Methods, Chap 3. Springer, Berlin, pp 81–118Google Scholar
  7. 7.
    Current J, Ratick S, ReVelle C (1998) Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach. European Journal of Operational Research 110:597–609CrossRefGoogle Scholar
  8. 8.
    Deb K (2001) Multi-objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. Wiley, ChichesterGoogle Scholar
  9. 9.
    Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Mathematik 1:269–271CrossRefGoogle Scholar
  10. 10.
    Drezner Z (1988) Location strategies for satellites’ orbits. Naval Research Logistics 35:503–512Google Scholar
  11. 11.
    Drezner Z (1995) Dynamic facility location: The progressive p-median problem. Location Science 3:1–7CrossRefGoogle Scholar
  12. 12.
    Drezner Z, Hamacher HW (2002) Facility Location: Applications and Theory. Springer, BerlinGoogle Scholar
  13. 13.
    Duckstein L (1984) Multiobjective optimization in structural design: The model choice problem, In: Atrek E, Gallagher RH, Ragsdell KM, Zienkiewicz OC (eds) New Directions in Optimum Structural Design. John Wiley and Sons Inc, New York, pp 459–481Google Scholar
  14. 14.
    Gee C (2001a) Forecast of natural population change 2000–2020 in the study area by spatial unit classes. Working Paper 21, University of Stuttgart, IREUSGoogle Scholar
  15. 15.
    Gee C (2001b) The treatment of objective functions. Working Paper 12, University of Stuttgart, IREUSGoogle Scholar
  16. 16.
    Gee C (2002a) Estimation of migration from 2000 to 2020 and population in 2020 by spatial unit classes for scenario building purposes. Working Paper 22, University of Stuttgart, IREUSGoogle Scholar
  17. 17.
    Gee C (2002b) The infrastructure evaluation model. Working Paper 26, University of Stuttgart, IREUSGoogle Scholar
  18. 18.
    Gee C (2003) The equation system for the Xuzhou project. Working Paper nn, University of Stuttgart, IREUSGoogle Scholar
  19. 19.
    Gee C, Treuner P (2004) A general concept of integrating transportation and other infrastructure investment planning – the Xuzhou experience. Proceedings of the 2nd International Symposium Networks for Mobility. Stuttgart, Germany, Sep 29–Oct 1Google Scholar
  20. 20.
    Hogan K (1990) Reducing errors in rainfall estimates through rain gauge location. Geographical Analysis 22:33–49CrossRefGoogle Scholar
  21. 21.
    Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680Google Scholar
  22. 22.
    Kuehn AA, Hamburger MJ (1963) A heuristic program for locating warehouses. Management Science 9:643–666CrossRefGoogle Scholar
  23. 23.
    Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics 21(6):1087–1092CrossRefGoogle Scholar
  24. 24.
    Pham DT, Karaboga D (2000) Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks. Springer, LondonGoogle Scholar
  25. 25.
    Saatcioglu O (1982) Mathematical programming models for airport site selection. Transportation Research B 16:435–447CrossRefGoogle Scholar
  26. 26.
    Samaniego L (2003) The allocation sub-model, In: Gee C et al (eds) Final report of Xuzhou integrated settlement and transportation development project, Vol 24. University of Stuttgart, IREUS, Stuttgart, pp 138–140Google Scholar
  27. 27.
    Samaniego L, Treuner P (2004) A two-step optimisation procedure for integrating transportation and other infrastructure investment planning. Proceedings of the 2nd International Symposium Networks for Mobility. Stuttgart, Germany, Sep 29–Oct 1Google Scholar
  28. 28.
    Treuner P et al (eds) (2003) Xuzhou integrated settlement and transportation development project: Final report on a co-operative research project, Vol 24. Univesity of Stuttgart, IREUS Research Report, StuttgartGoogle Scholar
  29. 29.
    van Laarhoven P, Aarts E (1992) Simulated Annealing: Theory and Applications. Kluwer, DordrechtGoogle Scholar
  30. 30.
    Vidal R (1993) Applied Simulated Annealing. Springer, BerlinGoogle Scholar
  31. 31.
    Wang Y (2002) The economic model in the Xuzhou project. Working Paper 19, University of Stuttgart, IREUSGoogle Scholar
  32. 32.
    Wang Y (2003) The initial calibration of the economic model. Working Paper 28, University of Stuttgart, IREUSGoogle Scholar
  33. 33.
    Wang Y, Zuo L (2003) Investigation objectives and budget constraints, In: Gee C et al (eds) Final report of Xuzhou integrated settlement and transportation development project, Vol 24. University of Stuttgart, IREUS, Stuttgart, pp 65–69Google Scholar
  34. 34.
    Willumsen LG, de D Ortuzar J (1990) Modelling Transport, 2nd edn. Wiley, ChichesterGoogle Scholar
  35. 35.
    Zhang Y et al (1995) Locational requirements for economic development in Jiangsu’s riverside zone. IREUS Research Reports No 18, StuttgartGoogle Scholar

Copyright information

© Physica-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Regional Development PlanningUniversity of StuttgartStuttgartGermany

Personalised recommendations