Skip to main content
Log in

Effect of surface texture, size ratio and large particle volume fraction on packing density of binary spherical mixtures

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Packing density is a key factor in governing the properties of materials such as concrete, asphalt, ceramic etc. Therefore, determination of packing density of a particulate mixture accurately, is of great importance. However, involvement of many external and internal factors such as surface texture, shape, method of packing etc. has made it very complicated and tedious to determine the packing density. The study investigated the combined effect of particle surface texture, size ratio and large particle volume fraction on packing density and developed a descriptive model to predict the packing density. Further, design graphs were also developed for the convenience. The study revealed that the British pendulum number value of the surface texture linearly varies with the packing density. The rougher the surface, the lower the packing density. The interparticle friction hinders the particle rearrangement. Hence, the ability to achieve a higher packing state is reduced. Further, irregularities in the surface boundary create void spaces, increasing the total voids in the mix. Thus, the packing density reduces. The increase of the size ratio decreases the packing density linearly. The packing density variation with a large particle volume fraction follows a 3rd order polynomial curve. The trend analysis was conducted to develop the descriptive model and design graphs to predict the packing density of binary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hettiarachchi, H.A.C.K., Mampearachchi, W.K.: Validity of aggregate packing models in mixture design of interlocking concrete block pavers (ICBP). Road Mater. Pavement Design 20(2), 462–474 (2019). https://doi.org/10.1080/14680629.2017.1393001

    Article  Google Scholar 

  2. Hettiarachchi, H.A.C.K., Mampearachchi, W.K.: Effect of vibration frequency, size ratio and large particle volume fraction on packing density of binary spherical mixtures. Powder Technol. 336, 150–160 (2018)

    Google Scholar 

  3. Kwan, A., Fung, W.: Packing density measurement and modelling of fine aggregate and mortar. Cement Concr. Compos. 31(6), 349–357 (2009)

    Google Scholar 

  4. Kwan, A.K.H., Chan, K.W., Wong, V.: A 3-parameter particle packing model incorporating the wedging effect. Powder Technol. 237(Supplement C), 172–179 (2013)

    Google Scholar 

  5. Roquier, G.: The 4-parameter compressible packing model (CPM) for crushed aggregate particles. Powder Technol. 320, 133–142 (2017)

    Google Scholar 

  6. Roquier, G.: The 4-parameter compressible packing model (CPM) including a new theory about wall effect and loosening effect for spheres. Powder Technol. 302, 247–253 (2016)

    Google Scholar 

  7. Aim, R.B., Le Goff, P.: Effet de paroi dans les empilements désordonnés de sphères et application à la porosité de mélanges binaires. Powder Technol. 1(5), 281–290 (1968)

    Google Scholar 

  8. Andreasen, A., Andersen, J.: About the relationship between density and particle spacing in products made of loose particles. Kolloid 50, 217–218 (1930)

    Google Scholar 

  9. Andreasen, A.M., Andersen, J.: Relation between grain size and interstitial space in products of unconsolidated granules. Kolloid-Zeitschrift 50(3), 217–228 (1930)

    Google Scholar 

  10. de Larrard, F.: Granular Structures and Concrete Formulation. Études et recherches des laboratoires des ponts et chaussées (2000)

  11. de Larrard, F., Sedran, T.: Optimization of ultra-high-performance concrete by the use of a packing model. Cement Concrete Res. 24(6), 997–1009 (1994)

    Google Scholar 

  12. Dewar, J.: Computer Modelling of Concrete Mixtures. CRC Press, Boca Raton (2002)

    Google Scholar 

  13. Fuller, W.B.: The law of proportioning concrete. Trans. Am. Soc. Civ. Eng. 59, 67–143 (1907)

    Google Scholar 

  14. Funk, J., Dinger, D., Funk Jr., J.: Coal Grinding and Particle Size Distribution Studies for Coal–Water Slurries at High Solids Loading. Alfred University Research Foundation, Alfred (1980)

    Google Scholar 

  15. Furnas, C.: Grading aggregates-I. Mathematical relations for beds of broken solids of maximum density. Ind. Eng. Chem. 23(9), 1052–1058 (1931)

    Google Scholar 

  16. Goltermann, P., Johansen, V., Palbol, L.: Packing of aggregates: an alternative tool to determine the optimal aggregate mix. ACI Mater. J. 94(5), 435–443 (1997)

    Google Scholar 

  17. Kwan, A.K.H., Wong, V., Fung, W.W.S.: A 3-parameter packing density model for angular rock aggregate particles. Powder Technol. 274(Supplement C), 54–162 (2015)

    Google Scholar 

  18. Powers, T.C.: The Properties of Fresh Concrete. Wiley, New York (1969)

  19. Roquier, G.: The 4-parameter compressible packing model (CPM) for crushed aggregate particles. Powder Technol. 320(Supplement C), 133–142 (2017)

    Google Scholar 

  20. Sedran, T., De Larrard, F.: Optimization of self-compacting concrete thanks to packing model. In: Proceedings 1st SCC Symposium, CBI Sweden, RILEM PRO7 (1999)

  21. Stovall, T., De Larrard, F., Buil, M.: Linear packing density model of grain mixtures. Powder Technol. 48(1), 1–12 (1986)

    Google Scholar 

  22. Toufar, W., Born, M., Klose, E.: Contribution of optimisation of components of different density in polydispersed particles systems. Freib. Bookl. A 558, 29–44 (1976)

    Google Scholar 

  23. Vesilind, P.A.: The Rosin–Rammler particle size distribution. Resour. Recov. Conserv. 5(3), 275–277 (1980)

    Google Scholar 

  24. Wong, V., Kwan, A.K.H.: A 3-parameter model for packing density prediction of ternary mixes of spherical particles. Powder Technol. 268((Supplement C)), 357–367 (2014)

    Google Scholar 

  25. Yu, A., Zou, R., Standish, N.: Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures. Ind. Eng. Chem. Res. 35(10), 3730–3741 (1996)

    Google Scholar 

  26. Yerazunis, S., Bartlett, J., Nissan, A.: Packing of binary mixtures of spheres and irregular particles. Nature 195(4836), 33–35 (1962)

    ADS  Google Scholar 

  27. Yerazunis, S., Cornell, S., Wintner, B.: Dense random packing of binary mixtures of spheres. Nature 207(4999), 835 (1965)

    ADS  MATH  Google Scholar 

  28. Santiso, E., Müller, E.A.: Dense packing of binary and polydisperse hard spheres. Mol. Phys. 100(15), 2461–2469 (2002)

    ADS  Google Scholar 

  29. de Lange Kristiansen, K., Wouterse, A., Philipse, A.: Simulation of random packing of binary sphere mixtures by mechanical contraction. Phys. A Stat. Mech. Appl. 358(2–4), 249–262 (2005)

    Google Scholar 

  30. Scott, G., Kilgour, D.: The density of random close packing of spheres. J. Phys. D Appl. Phys. 2(6), 863 (1969)

    ADS  Google Scholar 

  31. Visscher, W.M., Bolsterli, M.: Random packing of equal and unequal spheres in two and three dimensions. Nature 239(5374), 504 (1972)

    ADS  Google Scholar 

  32. Epstein, N., Young, M.: Random loose packing of binary mixtures of spheres. Nature 196(4857), 885–886 (1962)

    ADS  Google Scholar 

  33. Clarke, A., Wiley, J.: Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals. Phys. Rev. B 35(14), 7350 (1987)

    ADS  Google Scholar 

  34. O’Toole, P.I., Hudson, T.S.: New high-density packings of similarly sized binary spheres. J. Phys. Chem. C 115(39), 19037–19040 (2011)

    Google Scholar 

  35. Yu, A.B., Standish, N., McLean, A.: Porosity calculation of binary mixtures of nonspherical particles. J. Am. Ceram. Soc. 76(11), 2813–2816 (1993)

    Google Scholar 

  36. Aim, R.B., Goff, P.L.: Effet de paroi dans les empilements désordonnés de sphères et application à la porosité de mélanges binaires. Powder Technol. 1, 281 (1967)

    Google Scholar 

  37. Dodds, J.: The porosity and contact points in multicomponent random sphere packings calculated by a simple statistical geometric model. J. Colloid Interface Sci. 77(2), 317–327 (1980)

    ADS  Google Scholar 

  38. Kummerfeld, J.K., Hudson, T.S., Harrowell, P.: The densest packing of AB binary hard-sphere homogeneous compounds across all size ratios. J. Phys. Chem. B 112(35), 10773–10776 (2008)

    Google Scholar 

  39. Zheng, J., Carlson, W.B., Reed, J.S.: The packing density of binary powder mixtures. J. Eur. Ceram. Soc. 15(5), 479–483 (1995)

    Google Scholar 

  40. Chang, C.S., Deng, Y.: A nonlinear packing model for multi-sized particle mixtures. Powder Technol. 336, 449–464 (2018)

    Google Scholar 

  41. Chen, Z.C., et al.: Effect of particle packing on extrusion behavior of pastes. J. Mater. Sci. 35(21), 5301–5307 (2000)

    ADS  Google Scholar 

  42. Furnas, C.C.: Flow of Gases Through Beds of Broken Solids. Bureau of Mines, Washington, DC (1928)

    Google Scholar 

  43. Powers, M.C.: A new roundness scale for sedimentary particles. J. Sediment. Res. 23(2), 117–119 (1953)

    Google Scholar 

  44. Andreasen, A.: Über die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten). Kolloid-Zeitschrift 50(3), 217–228 (1930)

    Google Scholar 

  45. Funk, J.E., Dinger, D.R.: Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing. Springer, Berlin (1994)

    Google Scholar 

  46. Rosin, P., Rammler, E.: Die kornzusammensetzung des mahlgutes im lichte der wahrscheinlichkeitslehre. Kolloid-Zeitschrift 67(1), 16–26 (1934)

    Google Scholar 

  47. Goltermann, P., Johansen, V., Palbøl, L.: Packing of aggregates: an alternative tool to determine the optimal aggregate mix. Mater. J. 94(5), 435–443 (1997)

    Google Scholar 

  48. Alexander, M.G.M.: Aggregates in concrete, vol. 1. Taylor and Francis, Oxon (2005)

    Google Scholar 

  49. Mangulkar, M., Jamkar, S.: Review of particle packing theories used for concrete mix proportioning. In: Contributory Papers, vol. 141, (2013)

  50. Lamond, J.F., Pielert, J.H.: Significance of tests and properties of concrete and concrete-making materials. Vol. 169. ASTM International (2006)

  51. Janoo, V.C.: Quantification of Shape, Angularity, and Surface Texture of Base Course Materials. State of Vermont agency of transportation, Vermont (1998)

    Google Scholar 

  52. Little, D., Button, J., Jayawickrama, P., Mansour, S., Solaimanian, B.H.: Quantify shape, angularity and surface texture of aggregates using image analysis and study their effect on performance, pp. 1–143. Texas Transportation Institute, Texas (2003)

    Google Scholar 

  53. Erdoğan, S.T., Fowler, D.: Determination of aggregate shape properties using x-ray tomographic methods and the effect of shape on concrete rheology. International Center for Aggregates Research, Alexandria (2005)

    Google Scholar 

  54. Kwan, A., Mora, C.: Effects of various, shape parameters on packing of aggregate particles. Mag. Concrete Res. 53, 91–100 (2002)

    Google Scholar 

  55. Mora, C., Kwan, A.: Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement Concrete Res. 30(3), 351–358 (2000)

    Google Scholar 

  56. Wenzel, R.N.: Surface roughness and contact angle. J. Phys. Chem. 53(9), 1466–1467 (1949)

    Google Scholar 

  57. Blanks, R.F.: Modern concepts applied to concrete aggregate. In: Proceedings of the American Society of Civil Engineers. ASCE (1949)

  58. Terzaghi, K.P., Peck, R.B., Mesri, G.: Soil Mechanics in Engineering Practice. Wiley, New York (1967)

  59. Barskale, R.D., Itani, S.Y.: Influence of aggregate shape on base behavior. Transp. Res. Rec. 1227, 1241–1254 (1989)

  60. Bikerman, J.: Adhesion of asphalt to stone. J. Mater. 1, 34–47 (1966)

    Google Scholar 

  61. Wright, P.: A method of measuring the surface texture of aggregate. Mag. Concrete Res. 7(21), 151–160 (1955)

    Google Scholar 

  62. Lee, Y.-H., et al. The fractal dimension as a measure of the roughness of rock discontinuity profiles. In: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. Elsevier (1990)

  63. Wilson, J., Klotz, L.D., Nagaraj, C.: Automated measurement of aggregate indices of shape. Part. Sci. Technol. 15(1), 13–35 (1997)

    Google Scholar 

  64. Wang, Z.F., et al.: Effect of temperature and structure on the free volume and water vapor permeability in hydrophilic polyurethanes. J. Membr. Sci. 241(2), 355–361 (2004)

    Google Scholar 

  65. Corley-Lay, J.: Friction and surface texture characterization of 14 pavement test sections in Greenville, North Carolina. Transp. Res. Rec. J. Transp. Res. Board 1639, 155–161 (1998)

    Google Scholar 

  66. Goodman, S.N.: Quantification of Pavement Textural and Frictional Characteristics Using Digital Image Analysis, PhD diss., Carleton University (2009)

  67. Ahammed, M.A., Tighe, S.L.: Asphalt pavements surface texture and skid resistance—exploring the reality. Can. J. Civ. Eng. 39(1), 1–9 (2011)

    Google Scholar 

  68. Leu, M., Henry, J.: Prediction of skid resistance as a function of speed from pavement texture measurements. Transp. Res. Rec. 666, 7–13 (1978)

    Google Scholar 

  69. Lee, Y.P.K., Fwa, T.F., Choo, Y.S.: Effect of pavement surface texture on British pendulum test. J. Eastern Asia Soc. Transp. Stud. 6, 1247–1257 (2005)

    Google Scholar 

  70. Wambold, J.C., Henry, J.J., Hegmon, R.R.: Evaluation of pavement surface texture significance and measurement techniques. Wear 83(2), 351–368 (1982)

    Google Scholar 

  71. International, A., ASTM E303 - 93(2013) Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester. West Conshohocken (2013)

  72. McGeary, R.: Mechanical packing of spherical particles. J. Am. Ceram. Soc. 44(10), 513–522 (1961)

    Google Scholar 

  73. Ayer, J., Soppet, F.: Vibratory compaction: I, compaction of spherical shapes. J. Am. Ceram. Soc. 48(4), 180–183 (1965)

    Google Scholar 

  74. Meng, L., Lu, P., Li, S.: Packing properties of binary mixtures in disordered sphere systems. Particuology 16, 155–166 (2014)

    Google Scholar 

  75. Farr, R.S., Groot, R.D.: Close packing density of polydisperse hard spheres. J. Chem. Phys. 131(24), 244104 (2009)

    ADS  Google Scholar 

  76. Kyrylyuk, A.V., Wouterse, A., Philipse, A.P.: Percolation and jamming in random heterogeneous materials with competing length scales. In: Bucak, S. (ed.) Trends in Colloid and Interface Science, vol. 23. Springer, Berlin, pp. 29–33 (2010)

    Google Scholar 

  77. De Larrard, F.: Concrete Mixture Proportioning: A Scientific Approach. CRC Press, Boca Raton (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the senate research council grant funded by the University of Moratuwa under Grant No. SRC/LT/2015/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chamod Hettiarachchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hettiarachchi, C., Mampearachchi, W.K. Effect of surface texture, size ratio and large particle volume fraction on packing density of binary spherical mixtures. Granular Matter 22, 8 (2020). https://doi.org/10.1007/s10035-019-0978-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0978-3

Keywords

Navigation