Granular Matter

, 22:12 | Cite as

Rotational statistics in granular flows of smooth cylindrical particles

  • J. Jantzi
  • J. S. OlafsenEmail author
Original Paper
Part of the following topical collections:
  1. In Memoriam of Robert P. Behringer, late Editor in Chief of Granular Matter


We report the results of an experiment to investigate the energy dissipation in the rotational degree of freedom for smooth cylindrical particles in a driven granular flow. The 2D geometry and the experimental design allow for the measurement of three degrees of freedom in the dynamics: the rotational degree of freedom for the disks to spin about their cylindrical axes as well as the two translational degrees of freedom of the particles within the cell. The rotational velocity statistics demonstrate non-Gaussian behavior as well as a significant amount of energy being dissipated through the flow via the tangential friction between particles. These results are significant in that many driven granular experiments use smooth cylindrical or spherical particles to investigate granular dynamics, but the contribution to the dynamics from the rotational degrees of freedom is often unmeasured.


Driven granular flow Experimental Non-equilibrium thermostatistics Kinetic theory Rotational velocity statistics 



The authors acknowledge the support in part by funds from the Vice Provost for Research at Baylor University.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.


  1. 1.
    Jaegar, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Aronson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Olafsen, J.S., Urbach, J.S.: Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett. 81, 4369–4372 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Losert, W., Cooper, D.G.W., Delour, J., Kudrolli, A., Chaos, J.P.: Velocity statistics in excited granular media. Chaos Interdiscp J Nonlinear Sci 9, 682–690 (1999)CrossRefGoogle Scholar
  5. 5.
    Kudrolli, A., Henry, J.: Non-Gaussian velocity distributions in excited granular matter in the absence of clustering. Phys. Rev. E 62, R1489–R1492 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Painter, B., Behringer, R.P.: Dynamics of two-particle granular collisions on a surface. Phys. Rev. E 62, 2380–2387 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Rouyer, F., Menon, N.: Velocity fluctuations in a homogeneous 2D granular gas in steady state. Phys. Rev. Lett. 85, 3676–3679 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Ojha, R.P., Lemieux, P.-A., Dixon, P.K., Liu, A.J., Durian, D.J.: Statistical mechanics of a gas-fluidized particle. Nature (London) 427, 521 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Makse, H.A., Kurchan, J.: Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415, 614–617 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Jaegar, H.M., Nagel, S.R., Behringer, R.P.: The physics of granular materials. Phys. Today 49(4), 32 (1996)CrossRefGoogle Scholar
  11. 11.
    Schmick, M., Markus, M.: Gaussian distributions of rotational velocities in a granular medium. Phys. Rev. E 78, 010302 (R) (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Louge, M.Y., Adams, M.E.: Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate. Phys. Rev. E 65, 021303 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Wenzl, J., Seto, R., Roth, M., Butt, H.-J., Auernhammer, G.K.: Measurement of rotation of individual spherical particles in cohesive granulates. Granul. Matter 14(4), 391–400 (2013)CrossRefGoogle Scholar
  14. 14.
    Harrington, M., Lin, M., Nordstrom, K.N., Losert, W.: Experimental measurements of orientation and rotation of dense 3D packings of spheres. Granul. Matter 16(2), 185–191 (2014)CrossRefGoogle Scholar
  15. 15.
    Kou, B., Cao, Y., Li, J., Xia, C., Li, Z., Dong, H., Zhang, A., Zhang, J., Kob, W., Wang, Y.: Translational and rotational dynamical heterogeneities in granular systems. Phys. Rev. Lett. 121, 018002 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Cafiero, R., Luding, S., Herrmann, H.J.: Granular gas dynamics. Europhys. Lett. 60(6), 854–860 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Andreotti, B., Douady, S.: Rotationally driven gas of inelastic rough spheres. Phys. Rev. E 63, 031305 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Moka, S., Nott, P.R.: Statistics of particle velocities in dense granular flows. Phys. Rev. Lett. 95, 068003 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Baumann, G., Janosi, I.M., Wolf, D.E.: Surface properties and the flow of granular material in a two-dimensional rotating-drum model. Phys. Rev. E 51, 1879 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    Khakhar, D.V., McCarthy, J.J., Shinbrot, T., Ottino, J.M.: Transverse flow and mixing of granular materials in a rotating cylinder. Phys. Fluids 9, 31 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Bonamy, D., Daviaud, F., Laurent, L.: Experimental study of granular surface flows via a fast camera: a continuous description. Phys. Fluids 14, 1666 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Jacob, J.: Translational and Rotational Velocity Statistics in a Rotating Granular Tumbler. Honors College Thesis, Baylor University (2010, May)Google Scholar
  24. 24.
    Jantzi, J., Olafsen, J.S. (to be published)Google Scholar
  25. 25.
    Pavlidis, T.: Image analysis. Ann. Rev. Comput. Sci. 3, 121 (1988)CrossRefGoogle Scholar
  26. 26.
    Steinman, S.B., Steinman, B.A., Garzia, R.P.: Foundations of Binocular Vision: A Clinical Perspective. McGraw-Hill, New York (2000)Google Scholar
  27. 27.
    Jain, N., Ottino, J.M., Lueptow, R.M.: An experimental study of the flowing granular layer in a rotating tumbler. Phys. Fluids 14, 572 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Orpe, A.V., Kudrolli, A.: Velocity correlations in dense granular flows observed with internal imaging. Phys. Rev. Lett. 98, 238001 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBaylor UniversityWacoUSA

Personalised recommendations