Granular Matter

, 22:4 | Cite as

Athermal shearing of frictionless cross-shaped particles of varying aspect ratio

  • Theodore A. Marschall
  • S. TeitelEmail author
Original Paper
Part of the following topical collections:
  1. In Memoriam of Robert P. Behringer, late Editor in Chief of Granular Matter


We use numerical simulations to study the shear-driven steady-state flow of athermal, frictionless, overdamped, two dimensional cross-shaped particles of varying aspect ratios, and make comparison with the behavior of rod-shaped and staple-shaped particles. We find that the extent of non-convexity of the particle shape plays an important role in determining both the value of the jamming packing fraction as well as the rotational motion and orientational ordering of the particles.


Jamming Rheology Shearing Aspherical particles Orientational order 



This article is dedicated to the memory of Robert Behringer, who was much interested in the jamming of crosses, stars, and other oddly shaped granular particles. We thank an anonymous reviewer for several helpful and interesting comments. This work was supported in part by National Science Foundation Grants CBET-1435861 and DMR-1809318. Computations were carried out at the Center for Integrated Research Computing at the University of Rochester.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10035_2019_966_MOESM1_ESM.mp4 (46.8 mb)
Supplementary material 1 (mp4 47879 KB)
10035_2019_966_MOESM2_ESM.mp4 (40.8 mb)
Supplementary material 2 (mp4 41824 KB)
10035_2019_966_MOESM3_ESM.mp4 (38.7 mb)
Supplementary material 3 (mp4 39628 KB)


  1. 1.
    Börzsönyi, T., Stannarius, R.: Granular materials composed of shape-anisotropic grains. Soft Matter 9, 7401 (2013)ADSGoogle Scholar
  2. 2.
    Anki Reddy, K., Kumaran, V., Talbot, J.: Orientational ordering in sheared inelastic dumbells. Phys. Rev. E 80, 031304 (2009)ADSGoogle Scholar
  3. 3.
    Anki Reddy, K., Talbot, J., Kumaran, V.: Dynamics of sheared inelastic dumbells. J. Fluid Mech. 660, 475 (2010)zbMATHADSGoogle Scholar
  4. 4.
    Saint-Cyr, B., Delenne, J.-Y., Voivret, C., Radjai, F., Sornay, P.: Rheology of granular materials composed of nonconvex particles. Phys. Rev. E 84, 041302 (2011)ADSGoogle Scholar
  5. 5.
    Guo, Y., Wassgren, C., Ketterhagen, W., Hancock, B., James, B., Curtis, J.: A Numerical study of granular shear flows of rod-like particles using the discrete element method. J. Fluid. Mech. 713, 1 (2012)MathSciNetzbMATHADSGoogle Scholar
  6. 6.
    Athanassiadis, A.G., Miskin, M.Z., Kaplan, P., Rodenberg, N., Lee, S.H., Merritt, J., Brown, E., Amend, J., Lipson, H., Jaeger, H.M.: Particle shape effects on the stress response of granular packings. Soft Matter 10, 48 (2014)ADSGoogle Scholar
  7. 7.
    Zheng, H., Wang, D., Barés, J., Behringer, R.: Jamming by compressing a system of crosses. EPJ Web Conf. 140, 06014 (2017)Google Scholar
  8. 8.
    Mandal, S., Khakhar, D.V.: A study of the rheology and micro-structure of dumbbells in shear geometries. Phys. Fluids 30, 013303 (2018)ADSGoogle Scholar
  9. 9.
    VanderWerf, K., Jin, W., Shattuck, M.D., O’Hern, C.S.: Hypostatic jammed packings of frictionless nonspherical particles. Phys. Rev. E 97, 012909 (2018)ADSGoogle Scholar
  10. 10.
    Marschall, T.A., Franklin, S.V., Teitel, S.: Compression- and shear-driven jamming of U-shaped particles in two dimensions. Granul. Matter 17, 121 (2015)Google Scholar
  11. 11.
    Marschall, T., Keta, Y.-E., Olsson, P., Teitel, S.: Orientational ordering in athermally sheared, aspherical, frictionless particles. Phys. Rev Lett. 122, 188002 (2019)ADSGoogle Scholar
  12. 12.
    Marschall, T., Teitel, S.: Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts. Phys. Rev. E 100, 032906 (2019)ADSGoogle Scholar
  13. 13.
    Marschall, T., Van Hoesen, D., Teitel, S.: Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: orientational ordering and spatial correlations. arXiv:1909.08669
  14. 14.
    Evans, D.J., Morriss, G.P.: Statistical Mechanics of Non-equilibrium Liquids. Academic, London (1990)zbMATHGoogle Scholar
  15. 15.
    Donev, A., Burton, J., Stillinger, F.H., Torquato, S.: Tetratic order in the phase behavior of a hard-rectangle system. Phys. Rev. B 73, 054109 (2006)ADSGoogle Scholar
  16. 16.
    Olsson, P., Teitel, S.: Herschel-Bulkley shearing rheology near the athermal jamming transition. Phys. Rev. Lett. 109, 108001 (2012)ADSGoogle Scholar
  17. 17.
    O’Hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003)ADSGoogle Scholar
  18. 18.
    Donev, A., Cisse, I., Sachs, D., Variano, E.A., Stillinger, F.H., Connelly, R., Torquato, S., Chaikin, P.M.: Improving the density of jammed disordered packings using ellipsoids. Science 303, 990 (2004)ADSGoogle Scholar
  19. 19.
    Donev, A., Connelly, R., Stillinger, F.H., Torquato, S.: Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids. Phys. Rev. E 75, 051304 (2007)MathSciNetADSGoogle Scholar
  20. 20.
    Wouterse, A., Williams, S.R., Philipse, A.P.: Effect of particle shape on the density and microstructure of random packings. J. Phys. Condens. Matter 19, 406215 (2007)Google Scholar
  21. 21.
    Zeravcic, Z., Xu, N., Liu, A.J., Nagel, S.R., van Saarloos, W.: Excitations of ellipsoid packings near jamming. Europhys. Lett. 87, 26001 (2009)ADSGoogle Scholar
  22. 22.
    Mailman, M., Schreck, C.F., O’Hern, C.S., Chakraborty, B.: Jamming in systems composed of frictionless ellipse-shaped particles. Phys. Rev. Lett. 102, 255501 (2009)ADSGoogle Scholar
  23. 23.
    Azéma, E., Radjaï, F.: Stress-strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81, 051304 (2010)ADSGoogle Scholar
  24. 24.
    Schreck, C.F., Mailman, M., Chakraborty, B., O’Hern, C.S.: Constraints and vibrations in static packings of ellipsoidal particles. Phys. Rev. E 85, 061305 (2012)ADSGoogle Scholar
  25. 25.
    Marschall, T., Teitel, S.: Compression-driven jamming of athermal frictionless spherocylinders in two dimensions. Phys. Rev. B 97, 012905 (2018)ADSGoogle Scholar
  26. 26.
    Azéma, E., Radjaï, F., Dubois, F.: Packings of irregular polyhedral particles: Strength, structure, and effects of angularity. Phys. Rev. E 87, 062203 (2013)ADSGoogle Scholar
  27. 27.
    Song, C., Wang, P., Makse, H.A.: A phase diagram for jammed matter. Nature 453, 629 (2008)ADSGoogle Scholar
  28. 28.
    Otsuki, M., Hayakawa, H.: Critical scaling near jamming transition for frictional granular particles. Phys. Rev. E 83, 051301 (2011)ADSGoogle Scholar
  29. 29.
    Campbell, C.S.: Elastic granular flows of ellipsoidal particles. Phys. Fluids 23, 013306 (2011)ADSGoogle Scholar
  30. 30.
    Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W., Curtis, J.: Granular shear flows of flat disks and elongated rods without and with friction. Phys. Fluids 25, 063304 (2013)ADSGoogle Scholar
  31. 31.
    Börzsönyi, T., Szabó, B., Törös, G., Wegner, S., Török, J., Somfai, E., Bien, T., Stannarius, R.: Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108, 228302 (2012)ADSGoogle Scholar
  32. 32.
    Börzsönyi, T., Szabó, B., Wegner, S., Harth, K., Török, J., Somfai, E., Bien, T., Stannarius, R.: Shear-induced alignment and dynamics of elongated granular particles. Phys. Rev. E 86, 051304 (2012)ADSGoogle Scholar
  33. 33.
    Wegner, S., Börzsönyi, T., Bien, T., Rose, G., Stannarius, R.: Alignment and dynamics of elongated cylinders under shear. Soft Matter 8, 10950 (2012)ADSGoogle Scholar
  34. 34.
    Wegner, S., Stannarius, R., Boese, A., Rose, G., Szabó, B., Somfai, E., Börzsönyi, T.: Effects of grain shape on packing and dilatancy of sheared granular materials. Soft Matter 10, 5157 (2014)ADSGoogle Scholar
  35. 35.
    Trulsson, M.: Rheology and shear jamming of frictional ellipses. J. Fluid Mech. 849, 718 (2018)MathSciNetzbMATHADSGoogle Scholar
  36. 36.
    Nagy, D.P., Claudin, P., Börzsönyi, T., Somfai, E.: Rheology of dense granular flows for elongated particles. Phys. Rev. E 96, 062903 (2017)ADSGoogle Scholar
  37. 37.
    Onsager, L.: The effects of shape on the interaction of colloidal particles. Ann. N. York Acad. Sci. 51, 627 (1949)ADSGoogle Scholar
  38. 38.
    Vinutha, H.A., Sastry, S.: Disentangling the role of structure and friction in shear jamming. Nat. Phys. 12, 578 (2016)Google Scholar
  39. 39.
    Papanikolaou, S., O’Hern, C.S., Shattuck, M.D.: Isostaticity at frictional jamming. Phys. Rev. Lett. 110, 198002 (2013)ADSGoogle Scholar
  40. 40.
    Buchholtz, V., Pöschel, T.: Numerical investigations of the evolution of sandpiles. Physica A 202, 390 (1994)ADSGoogle Scholar
  41. 41.
    Alonso-Marroquín, F.: Spheropolygons: A new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. Europhys. Lett. 83, 14001 (2008)ADSGoogle Scholar
  42. 42.
    Galindo-Torres, S.A., Alonso-Marroquín, F., Wang, Y.C., Pedroso, D., Muñoz Castaño, J.D.: Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity. Phys. Rev. E 79, 060301 (2009)ADSGoogle Scholar
  43. 43.
    Cundall, P.A., Strack, O.: A discrete numerical model for granular assemblies. Geotechnique 29, 47 (1979)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations