Granular Matter

, 22:5 | Cite as

Shear of granular materials composed of ellipses

  • Dong Wang
  • Hu ZhengEmail author
  • Yuan Ji
  • Jonathan Barés
  • Robert P. Behringer
Original Paper
Part of the following topical collections:
  1. In Memoriam of Robert P. Behringer, late Editor in Chief of Granular Matter


Granular systems of disks (2D) and spheres (3D) under shear have been studied extensively. However, less attention has been paid to systems of non-spherical particles, i.e., ellipses, polygons, etc. Here we studied a quasi 2D granular system composed of ellipses under homogeneous simple shear. By tracking the positions and orientations of the ellipses, we have observed that they gradually rotate to align along a preferred direction as the shear strain increases. This preferred direction asymptotically approach a density-independent value at large strain. While first reported for disk systems, shear jamming is also observed for our ellipse system, as indicated by the increase of system pressure and coordination number with shear strain.


Granular materials Elliptical particles Shear Photoelasticity 



This work is dedicated to Bob Behringer, whom we are deeply indebted to and will forever miss. His role in supporting and mentoring this research clearly justifies his inclusion as a coauthor. This work was supported by NSF Grants No. DMR-1206351 and DMS-1248071, NASA Grant No. NNX15AD38G, the William M. Keck Foundation, DARPA Grant No. 4-34728, and a Research Triangle MRSEC fellowship (DW). HZ also thanks NSFC Grant No. 41672256 and NSFC (Jiangsu) Grant No. BK20180074.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Barés, J., Wang, D., Wang, D., Bertrand, T., O’Hern, C.S., Behringer, R.P.: Local and global avalanches in a two-dimensional sheared granular medium. Phys. Rev. E 96(5), 052902 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Abed Zadeh, A., Barés, J., Socolar, J., Behringer, R.P.: Seismicity in sheared granular matter. Phys. Rev. E 99, 052902 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Edwards, S.F., Oakeshott, R.B.S.: Theory of powders. Physica A 157, 1080–1090 (1989) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Liu, A.J., Nagel, S.R.: Nonlinear dynamics: jamming is not just cool any more. Nature 396(6706), 21–22 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    O’Hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Cates, M.E., Wittmer, J.P., Bouchaud, J.-P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81(9), 1841–1844 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Silbert, L.E.: Jamming of frictional spheres and random loose packing. Soft Matter 6, 2918–2924 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Aste, T., Di Matteo, T., Saadatfar, M., Senden, T.J., Schröter, M., Swinney, H.L.: An invariant distribution in static granular media. EPL 79, 24003 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Bi, D., Zhang, J., Chakraborty, B., Behringer, R.P.: Jamming by shear. Nature 480(7377), 355–358 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Mailman, M., Schreck, C.F., O’Hern, C.S., Chakraborty, B.: Jamming in systems composed of frictionless ellipse-shaped particles. Phys. Rev. Lett. 102, 255501 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Schreck, C.F., Xu, N., O’Hern, C.S.: A comparison of jamming behavior in systems composed of dimer- and ellipse-shaped particles. Soft Matter 6, 2960–2969 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Campbell, C.S.: Elastic granular flows of ellipsoidal particles. Phys. Fluids 23, 013306 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Börzsönyi, T., Szábo, B., Törös, G., Wegner, S., Török, J., Somfai, E., Bien, T., Stannarius, R.: Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108, 228302 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Börzsönyi, T., Szabó, B., Wegner, S., Harth, K., Török, J., Somfai, E., Bien, T., Stannarius, R.: Shear-induced alignment and dynamics of elongated granular particles. Phys. Rev. E 86, 051304 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Börzsönyi, T., Stannarius, R.: Granular materials composed of shape–anisotropic grains. Soft Matter 9, 7401 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Schaller, F.M., Neudecker, M., Saadatfar, M., Delaney, G.W., Schröder-Turk, G.E., Schröter, M.: Local origin of global contact numbers in frictional ellipsoid packings. Phys. Rev. Lett. 114, 158001 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Tang, J., Behringer, R.P.: Orientation, flow, and clogging in a two-dimensional hopper: ellipses vs. disks. EPL 114, 34002 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Sarkar, S., Chakraborty, B.: Shear-induced rigidity in athermal materials: a unified statistical framework. Phys. Rev. E 91, 042201 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Sarkar, S., Bi, D., Zhang, J., Ren, J., Behringer, R.P., Chakraborty, B.: Shear-induced rigidity of frictional particles: analysis of emergent order in stress space. Phys. Rev. E 93(4), 042901 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Zadeh, A.A., Barés, J., Brzinski, T.A., Daniels, K.E., Dijksman, J., Docquier, N., Everitt, H., Kollmer, J.E., Lantsoght, O., Wang, D., et al.: Enlightening force chains: a review of photoelasticimetry in granular matter. Granul. Matter 21, 83 (2019)CrossRefGoogle Scholar
  23. 23.
    Zadeh, A.A., Barés, J., Brzinski, T., Daniels, K.E., Dijksman, J., Docqiuer, N., Everitt, H., Kollmer, J., Lantsoght, O., Wang, D., Workamp, M., Zhao, Y., Zheng, H.: Photoelastic methods wiki (2019). Accessed 2019
  24. 24.
    Ren, J., Dijksman, J.A., Behringer, R.P.: Reynolds pressure and relaxation in a sheared granular system. Phys. Rev. Lett. 110(1), 018302 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge (2000)Google Scholar
  26. 26.
    Ren, J., Dijksman, J.A., Behringer, R.P.: AIP Conference Proceedings: Powders and Grains, vol. 1542, p. 527 (2013)Google Scholar
  27. 27.
    Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)CrossRefGoogle Scholar
  28. 28.
    Phillips, J.C.: Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys. 59(9), 1133–1207 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Philippe, E., Bideau, D.: Compaction dynamics of a granular medium under vertical tapping. EPL 60(5), 677 (1970)ADSCrossRefGoogle Scholar
  30. 30.
    Gravish, N., Franklin, S.V., Hu, D.L., Goldman, D.I.: Entangled granular media. Phys. Rev. Lett. 108, 208001 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2d granular couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Howell, D., Behringer, R.P.: Fluctuations and dynamics for a two-dimensional sheared granular material. In: Behringer, R.P., Jenkins, J.T. (eds.) Powders and Grains 97, pp. 337–340. Taylor & Francis, Abingdon-on-Thames (1997)Google Scholar
  33. 33.
    Xu, Y., Barés, J., Zhao, Y., Behringer, R.P.: Jamming transition: heptagons, pentagons, and discs. In: EPJ Web of Conferences, vol. 140, p. 06010 (2017)Google Scholar
  34. 34.
    Maxwell, J.C.: On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294–299 (1864)CrossRefGoogle Scholar
  35. 35.
    Zheng, H., Dijksman, J.A., Behringer, R.P.: Shear jamming in granular experiments without basal friction. EPL 107(3), 34005 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Zhao, Y., Barés, J., Zheng, H., Bester, C.S., Xu, Y., Socolar, J.S.E., Behringer, R.P.: Jamming transition in non-spherical particle systems: pentagons versus disks. Granul. Matter 21, 90 (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Center for Non-Linear and Complex SystemsDuke UniversityDurhamUSA
  2. 2.Department of Geotechnical Engineering, College of Civil EngineeringTongji UniversityShanghaiChina
  3. 3.School of Earth Science and EngineeringHohai UniversityNanjingChina
  4. 4.International Center for Quantum Materials, School of PhysicsPeking UniversityBeijingChina
  5. 5.Laboratoire de Mécanique et Génie CivilUniversité de Montpellier, CNRSMontpellierFrance

Personalised recommendations