Advertisement

Granular Matter

, 21:110 | Cite as

Benefits of virtual calibration for discrete element parameter estimation from bulk experiments

  • Salma Ben TurkiaEmail author
  • Daniel N. Wilke
  • Patrick Pizette
  • Nicolin Govender
  • Nor-Edine Abriak
Original Paper
  • 140 Downloads

Abstract

Calibration remains an important challenge in the estimation of discrete element parameters. Importantly, the usability of the discrete element method (DEM) is directly dependent on the quality of the parameter estimation. Numerous approaches have been developed to characterize discrete element parameters directly from experimental data, often characterized by insufficient data and overparametrized models, which needlessly to say often fits the experimental data very well. However, if the quality of the parameter vector is properly investigated or critically interpreted for quality and uniqueness the applicability for applications distinct from the experimental setup remain indecisive. This study proposes a virtual calibration on simulated data to be conducted before the actual calibration on experimental data is pursued. The reason being that for the virtual experiment we know the answer of the optimal parameter vector beforehand, hence we can investigate and map the effect of aleatoric uncertainty spatially over the parameter domain. This mapping allows us to differentiate between model parameters that can be uniquely defined and those that require additional information to be uniquely defined for a given an experimental setup. Our results show that certain parameter vectors can be identified more uniquely than others. This implies that using the same experimental setup certain materials can be better identified than other materials. The approach we propose allows us to estimate the identifiability of various parameter vectors or equivalently various materials using the same experimental setup. As a consequence, our proposed approach can inform the calibrator when additional experimental data through an additional experimental setup is required to finally obtain a sufficiently calibrated DEM model. In summary, we need to identify the correct model parameters as opposed merely model parameters that matches the desired output to ensure that we can achieve some sensible measure of extrapolation from the calibrated experimental setup.

Keywords

Discrete element method Calibration Virtual experiment Optimization Ill-posed Well-posed 

Notes

Acknowledgements

This work was supported in part by the MARIE Sklodowska-CURIE Individual Fellowships with acronym DECRON, funded through the European Union’s H2020 under REA grant agreement No. 747963. We gratefully acknowledge the support of the NVIDIA Corporation with the donation of the Titan GPUs used for this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hanley, K.J., Sullivan, C.O., Oliveira, J.C., Cronin, K., Byrne, E.P.: Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol. 210, 230–240 (2011).  https://doi.org/10.1016/j.powtec.2011.03.023 CrossRefGoogle Scholar
  2. 2.
    Sarkar, S., Chaudhuri, B.: DEM modeling of high shear wet granulation of a simple system. Asian J. Pharm. Sci. 13, 220–228 (2018).  https://doi.org/10.1016/j.ajps.2018.01.001 CrossRefGoogle Scholar
  3. 3.
    Höhner, D., Wirtz, S., Scherer, V.: A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method. Powder Technol. 226, 16–28 (2012).  https://doi.org/10.1016/j.powtec.2012.03.041 CrossRefGoogle Scholar
  4. 4.
    Wu, K., Pizette, P., Becquart, F., Rémond, S., Abriak, N.E., Xu, W., Liu, S.: Experimental and numerical study of cylindrical triaxial test on mono-sized glass beads under quasi-static loading condition. Adv. Powder Technol. 28, 155–166 (2017).  https://doi.org/10.1016/j.apt.2016.09.006 CrossRefGoogle Scholar
  5. 5.
    Govender, N., Rajamani, R.K., Kok, S., Wilke, D.N.: Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework. Miner. Eng. 79, 152–168 (2015).  https://doi.org/10.1016/j.mineng.2015.05.010 CrossRefGoogle Scholar
  6. 6.
    Yang, H., Xu, W.J., Sun, Q.C., Feng, Y.: Study on the meso-structure development in direct shear tests of a granular material. Powder Technol. 314, 129–139 (2017).  https://doi.org/10.1016/j.powtec.2016.12.084 CrossRefGoogle Scholar
  7. 7.
    Hlosta, J., Žurovec, D., Rozbroj, J., Ramírez-Gómez, Á., Nečas, J., Zegzulka, J.: Experimental determination of particle–particle restitution coefficient via double pendulum method. Chem. Eng. Res. Des. 135, 222–233 (2018).  https://doi.org/10.1016/j.cherd.2018.05.016 CrossRefGoogle Scholar
  8. 8.
    Paulick, M., Morgeneyer, M., Kwade, A.: Review on the in fluence of elastic particle properties on DEM simulation results. Powder Technol. 283, 66–76 (2015).  https://doi.org/10.1016/j.powtec.2015.03.040 CrossRefGoogle Scholar
  9. 9.
    Suhr, B., Six, K.: On the effect of stress dependent interparticle friction in direct shear tests. Powder Technol. 294, 211–220 (2016).  https://doi.org/10.1016/j.powtec.2016.02.029 CrossRefGoogle Scholar
  10. 10.
    Horabik, J., Molenda, M.: Parameters and contact models for DEM simulations of agricultural granular materials: a review. Biosyst. Eng. 147, 206–225 (2016).  https://doi.org/10.1016/j.biosystemseng.2016.02.017 CrossRefGoogle Scholar
  11. 11.
    Asteriou, P., Tsiambaos, G.: Effect of impact velocity, block mass and hardness on the coefficients of restitution for rockfall analysis. Int. J. Rock Mech. Min. Sci. 106, 41–50 (2018).  https://doi.org/10.1016/j.ijrmms.2018.04.001 CrossRefGoogle Scholar
  12. 12.
    Ye, F., Wheeler, C., Chen, B., Hu, J., Chen, K., Chen, W.: Calibration and verification of DEM parameters for dynamic particle flow conditions using a backpropagation neural network. Adv. Powder Technol. 30, 292–301 (2019)CrossRefGoogle Scholar
  13. 13.
    Cheng, H., Shuku, T., Thoeni, K., Yamamoto, H.: Calibration of micromechanical parameters for DEM simulations by using the particle filter. EPJ Web Conf. 12011, 1–4 (2017)Google Scholar
  14. 14.
    Cheng, H., Shuku, T., Thoeni, K., Yamamoto, H.: Probabilistic calibration of discrete element simulations using the sequential quasi-Monte Carlo filter. Granul. Matter. 20, 1–19 (2018).  https://doi.org/10.1007/s10035-017-0781-y CrossRefGoogle Scholar
  15. 15.
    Roessler, T., Richter, C., Katterfeld, A., Will, F.: Development of a standard calibration procedure for the DEM parameters of cohesionless bulk materials—part I: solving the problem of ambiguous parameter combinations. Powder Technol. 343, 803–812 (2019).  https://doi.org/10.1016/j.powtec.2018.11.034 CrossRefGoogle Scholar
  16. 16.
    Johnstone, M.W.: Calibration of DEM models for granular materials using bulk physical tests. PhD thesis, University of Edinburgh (2010)Google Scholar
  17. 17.
    Syed, Z., Tekeste, M., White, D.: A coupled sliding and rolling friction model for DEM calibration. J. Terramech. 72, 9–20 (2017).  https://doi.org/10.1016/j.jterra.2017.03.003 CrossRefGoogle Scholar
  18. 18.
    Rackl, M., Hanley, K.J.: A methodical calibration procedure for discrete element models. Powder Technol. 307, 73–83 (2017).  https://doi.org/10.1016/j.powtec.2016.11.048 CrossRefGoogle Scholar
  19. 19.
    Syed, Z.I., Schaeffer, V.: Development and calibration of discrete element method inputs to mechanical responses of granular materials. PhD thesis, Iowa State University (2017)Google Scholar
  20. 20.
    Rackl, M., Hanley, K.J.: Efficient calibration of discrete element material model parameters using latin hypercube sampling and Kriging. 5–10 (2016)Google Scholar
  21. 21.
    Govender, N., Wilke, D.N., Pizette, P., Abriak, N.: A study of shape non-uniformity and polydispersity in hopper discharge for spherical and polyhedral particle systems. Appl. Math. Comput. 319, 318–336 (2018)zbMATHGoogle Scholar
  22. 22.
    Pizette, P., Govender, N., Wilke, D.N., Abriak, N.-E.: DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications. EPJ Web Conf. 140, 4–7 (2017).  https://doi.org/10.1051/epjconf/201714003071 CrossRefzbMATHGoogle Scholar
  23. 23.
    Benvenuti, L., Kloss, C., Pirker, S.: Identification of DEM simulation parameters by artificial neural networks and bulk experiments. Powder Technol. 291, 456–465 (2016).  https://doi.org/10.1016/j.powtec.2016.01.003 CrossRefGoogle Scholar
  24. 24.
    Pizette, P., Martin, C.L., Delette, G., Sornay, P., Sans, F.: Compaction of aggregated ceramic powders: from contact laws to fracture and yield surfaces. Powder Technol. 198, 240–250 (2010).  https://doi.org/10.1016/j.powtec.2009.11.013 CrossRefGoogle Scholar
  25. 25.
    Yoon, J.: Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. Sci. 44, 871–889 (2007).  https://doi.org/10.1016/j.ijrmms.2007.01.004 CrossRefGoogle Scholar
  26. 26.
    Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for Experimenters : An Introduction to Design, Data Analysis, and Model Building. Wiley, New York (1978)zbMATHGoogle Scholar
  27. 27.
    Zhou, H., Hu, Z., Chen, J., Lv, X., Xie, N.: Calibration of DEM models for irregular particles based on experimental design method and bulk experiments. Powder Technol. 332, 210–223 (2018).  https://doi.org/10.1016/j.powtec.2018.03.064 CrossRefGoogle Scholar
  28. 28.
    Kobyłka, R., Horabik, J., Molenda, M.: Numerical simulation of the dynamic response due to discharge initiation of the grain silo. Int. J. Solids Struct. 106–107, 27–37 (2017).  https://doi.org/10.1016/j.ijsolstr.2016.12.001 CrossRefGoogle Scholar
  29. 29.
    Coetzee, C.J.: Review: calibration of the discrete element method. Powder Technol. 310, 104–142 (2017).  https://doi.org/10.1016/j.powtec.2017.01.015 CrossRefGoogle Scholar
  30. 30.
    Do, H.Q., Aragón, A.M., Schott, D.L.: A calibration framework for discrete element model parameters using genetic algorithms. Adv. Powder Technol. 29, 1393–1403 (2018).  https://doi.org/10.1016/j.apt.2018.03.001 CrossRefGoogle Scholar
  31. 31.
    Boikov, A.V., Savelev, R.V., Payor, V.A.: DEM calibration approach: design of experiment. J. Phys. Conf. Ser. (2018).  https://doi.org/10.1088/1742-6596/1015/3/032017 CrossRefGoogle Scholar
  32. 32.
    Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33(4), 305–325 (1946)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response surface methodology: Process and product optimization using designed experiments. In: Probability and Statistics, vol. 705. Wiley (2009)Google Scholar
  34. 34.
    Xavier, B., Sylvain, M., Abibatou, N., Veronique, P., Olivier, B.: Calibration of DEM parameters on shear test experiments using Kriging method. EPJ Web Conf. 14, 15016 (2017).  https://doi.org/10.1051/epjconf/201714015016 CrossRefGoogle Scholar
  35. 35.
    Medina-Cetina, Z., Khoa, H.D.V.: Probabilistic calibration of discrete particle models for geomaterials. In: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. Acad. Pract. Geotechnical Engineering 1, pp. 704–707 (2009).  https://doi.org/10.3233/978-1-60750-031-5-704
  36. 36.
    Do, H.Q., Aragón, A.M., Schott, D.L.: Automated discrete element method calibration using genetic and optimization algorithms. EPJ Web Conf. 140, 15011 (2017).  https://doi.org/10.1051/epjconf/201714015011 CrossRefGoogle Scholar
  37. 37.
    Cabiscol, R., Finke, J.H., Kwade, A.: Calibration and interpretation of DEM parameters for simulations of cylindrical tablets with multi-sphere approach. Powder Technol. 327, 232–245 (2018).  https://doi.org/10.1016/j.powtec.2017.12.041 CrossRefGoogle Scholar
  38. 38.
    Mousaviraad, M., Tekeste, M.Z., Rosentrater, K.A.: Calibration and validation of a discrete element model of corn using grain flow simulation in a commercial screw grain auger. Trans. ASABE 60, 1403–1415 (2017).  https://doi.org/10.13031/trans.12200 CrossRefGoogle Scholar
  39. 39.
    Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Int. J. (2012).  https://doi.org/10.1504/pcfd.2012.047457 CrossRefGoogle Scholar
  40. 40.
    Govender, N., Pizette, P., Wilke, D.N., Abriak, N.: Validation of the GPU based BLAZE-DEM framework for hopper discharge. In: Proceedings of IVth International Conference Part Methods (2015)Google Scholar
  41. 41.
    Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012).  https://doi.org/10.1016/j.powtec.2011.10.057 CrossRefGoogle Scholar
  42. 42.
    Zhou, L., Chu, X., Xu, Y.: DEM investigation on characteristics of rolling resistance for modelling particle shape. EPJ Web Conf. 5005, 10–13 (2017)Google Scholar
  43. 43.
    Ketterhagen, W.R., Bharadwaj, R., Hancock, B.C.: The coefficient of rolling resistance (CoRR) of some pharmaceutical tablets. Int. J. Pharm. 392, 107–110 (2010).  https://doi.org/10.1016/j.ijpharm.2010.03.039 CrossRefGoogle Scholar
  44. 44.
    Eglajs, V., Audze, P.: New approach to the design of multifactor experiments. Probl. Dyn. Strengths 35, 104–107 (1977)Google Scholar
  45. 45.
    PyDOE: The experimental design package for Python. https://github.com/tisimst/pyDOE (2018)
  46. 46.
    Snyman, J.A., Wilke, D.N.: Practical mathematical optimization. Basic Optimization Theory and Gradient-Based Algorithms. In: Springer Optimization and Its Applications, ISBN 978-3-319-77585-2 (2018)Google Scholar
  47. 47.
    Longmore, J.P., Marais, P., Kuttel, M.M.: Towards realistic and interactive sand simulation: a GPU-based framework. Powder Technol. 235, 983–1000 (2013).  https://doi.org/10.1016/j.powtec.2012.10.056 CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Asaadi, E., Wilke, D.N., Heyns, P.S., Kok, S.: The use of direct inverse maps to solve material identification problems: pitfalls and solutions. Struct. Multidiscip. Optim. 55, 613–632 (2017).  https://doi.org/10.1007/s00158-016-1515-1 CrossRefGoogle Scholar
  50. 50.
    Chae, Y., Wilke, D.N.: Heuristic linear algebraic rank-variance formulation and solution approach for efficient sensor placement. Eng. Struct. 153, 717–731 (2017).  https://doi.org/10.1016/j.engstruct.2017.10.055 CrossRefGoogle Scholar
  51. 51.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  52. 52.
    Zheng, J., An, X., Huang, M.: GPU-based parallel algorithm for particle contact detection and its application in self-compacting concrete flow simulations. Comput. Struct. 112–113, 193–204 (2012).  https://doi.org/10.1016/j.compstruc.2012.08.003 CrossRefGoogle Scholar
  53. 53.
    Govender, N., Wilke, D.N., Kok, S., Els, R.: Development of a convex polyhedral discrete element simulation framework for NVIDIA Kepler based GPUs. J. Comput. Appl. Math. 270, 386–400 (2014).  https://doi.org/10.1016/j.cam.2013.12.032 MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Pizette, P., Govender, N., Abriak, N.E., Wilke, D.N.: GPU DEM simulations and experimental studies of ball milling process for various particle shapes. Springer Proc. Phys. 188, 1345–1352 (2016).  https://doi.org/10.1007/978-981-10-1926-5_138 CrossRefzbMATHGoogle Scholar
  55. 55.
    Xu, J., Qi, H., Fang, X., Lu, L., Ge, W., Wang, X., Xu, M., Chen, F., He, X., Li, J.: Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing. Particuology 9, 446–450 (2011).  https://doi.org/10.1016/j.partic.2011.01.003 CrossRefGoogle Scholar
  56. 56.
    Radeke, C.A., Glasser, B.J., Khinast, J.G.: Large-scale powder mixer simulations using massively parallel GPUarchitectures. Chem. Eng. Sci. 65, 6435–6442 (2010).  https://doi.org/10.1016/j.ces.2010.09.035 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Salma Ben Turkia
    • 1
    • 2
    Email author
  • Daniel N. Wilke
    • 3
  • Patrick Pizette
    • 1
  • Nicolin Govender
    • 1
    • 4
    • 5
  • Nor-Edine Abriak
    • 1
  1. 1.IMT Lille Douai, EA 4515 – LGCgE- Civil Engineering and Environmental DepartmentUniversity of LilleDouaiFrance
  2. 2.Arab University of SciencesTunisTunisia
  3. 3.Centre for Asset and Integrity ManagementUniversity of PretoriaPretoriaSouth Africa
  4. 4.Research Center Pharmaceutical EngineeringGmbHGrazAustria
  5. 5.Department of Chemical EngineeringUniversity of SurreyGuildfordUK

Personalised recommendations