Advertisement

Granular Matter

, 21:101 | Cite as

Pressure-dependent grain dissolution using discrete element simulations

  • Minsu ChaEmail author
  • J. Carlos Santamarina
Original Paper
  • 179 Downloads

Abstract

Pressure solution-precipitation is a diagenetic process often involved in compaction, hardening, creep and healing. This study explores the evolution of pressure-dependent mineral dissolution using the discrete element method where grains are gradually contracted in proportion to the total normal force they carry. Under zero lateral strain and constant vertical stress boundary conditions, contact forces homogenize during the early stages of dissolution, there is a minor increase in coordination number and the global porosity decreases (even though there is no reprecipitation in these simulations). There is a transient drop in the lateral stress, shear bands start to emerge as the horizontal stress reaches a minimum value. The porosity is higher and the coordination number is lower within shear bands than in the surrounding soil wedges; furthermore, interparticle forces tend to homogenize within wedges, while marked force chains develop within shear bands. On the other hand, there is no shear localization during pressure solution simulations under isotropic stress boundary conditions. Regardless of the boundary conditions, the initially uniform grain size distribution evolves towards a unimodal distribution; improved particle grading facilitates the global reduction in porosity and the associated increase in coordination number. The emergence of shear discontinuities during pressure solution under zero lateral strains may explain the non-tectonic origin of polygonal fault systems observed in marine sediments and lacustrine deposits.

Keywords

Grain dissolution Pressure solution Discrete element modeling Shear localization Polygonal faults 

Notes

Acknowledgements

Support for this research was provided by the Department of Energy Savannah River Operations Office, the Goizueta Foundation and the KAUST endowment. The authors are grateful to the anonymous reviewers for insightful comments. G. Abelskamp edited the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10035_2019_960_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)
10035_2019_960_MOESM2_ESM.avi (22 mb)
Supplementary material 2 (AVI 22559 kb)

References

  1. 1.
    Alley, W.M., Healy, R.W., Labaugh, J.W., Reilly, T.E.: Flow and storage in groundwater systems. Science 296, 1985–1990 (2002)ADSGoogle Scholar
  2. 2.
    Angevine, C.L., Turcotte, D.L.: Porosity reduction by pressure solution—a theoretical-model for quartz arenites. Geol. Soc. Am. Bull. 94, 1129–1134 (1983)ADSGoogle Scholar
  3. 3.
    Angevine, C.L., Turcotte, D.L., Furnish, M.D.: Pressure solution lithification as a mechanism for the stick-slip behavior of faults. Tectonics 1, 151–160 (1982)ADSGoogle Scholar
  4. 4.
    Bagi, K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7, 31–43 (2005)zbMATHGoogle Scholar
  5. 5.
    Carrio-Schaffhauser, E., Raynaud, S., Latière, H.J., Mazerolle, F.: Propagation and localization of stylolites in limestones. Geol. Soc. Lond. Spec. Publ. 54, 193–199 (1990)ADSGoogle Scholar
  6. 6.
    Cartwright, J.: Diagenetically induced shear failure of fine-grained sediments and the development of polygonal fault systems. Mar. Pet. Geol. 28, 1593–1610 (2011)Google Scholar
  7. 7.
    Cartwright, J., James, D., Bolton, A.: The genesis of polygonal fault systems; a review. Geol. Soc. Lond. Spec. Publ. 216, 223–243 (2003)ADSGoogle Scholar
  8. 8.
    Cha, M., Santamarina, J.C.: Predissolution and postdissolution penetration resistance. J. Geotech. Geoenviron. Eng. 139, 2193–2200 (2013)Google Scholar
  9. 9.
    Cha, M., Santamarina, J.C.: Dissolution of randomly distributed soluble grains: post dissolution k0-loading and shear. Géotechnique 64, 828–836 (2014)Google Scholar
  10. 10.
    Cha, M., Santamarina, J.C.: Effect of dissolution on the load-settlement behavior of shallow foundations. Can. Geotech. J. 53, 1353–1357 (2016)Google Scholar
  11. 11.
    Cha, M., Santamarina, J.C.: Hydro-chemo-mechanical coupling in sediments: localized mineral dissolution. Geomech. Energy Environ. 7, 1–9 (2016)Google Scholar
  12. 12.
    Cha, M., Santamarina, J.C.: Localized dissolution in sediments under stress. Granul. Matter 21, 79 (2019)Google Scholar
  13. 13.
    Croize, D., Bjorlykke, K., Jahren, J., Renard, F.: Experimental mechanical and chemical compaction of carbonate sand. J. Geophys. Res. Solid Earth 115, B11204 (2010)ADSGoogle Scholar
  14. 14.
    Cundall, P.A., Strack, O.D.L.: Discrete numerical-model for granular assemblies. Géotechnique 29, 47–65 (1979)Google Scholar
  15. 15.
    da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)ADSGoogle Scholar
  16. 16.
    de Boer, R.B.: On the thermodynamics of pressure solution—interaction between chemical and mechanical forces. Geochim. Cosmochim. Acta 41, 249–256 (1977)ADSGoogle Scholar
  17. 17.
    de Boer, R.B., Nagtegaal, P.J.C., Duyvis, E.M.: Pressure solution experiments on quartz sand. Geochim. Cosmochim. Acta 41, 257–264 (1977)ADSGoogle Scholar
  18. 18.
    de Bono, J.P., McDowell, G.R.: DEM of triaxial tests on crushable sand. Granul. Matter 16, 551–562 (2014)Google Scholar
  19. 19.
    de Meer, S., Spiers, C., Peach, C.: Pressure solution creep in gypsum: evidence for precipitation reaction control. Phys. Chem. Earth 22, 33–37 (1997)Google Scholar
  20. 20.
    Dewers, T., Hajash, A.: Rate laws for water-assisted compaction and stress-induced water–rock interaction in sandstones. J. Geophys. Res. Solid Earth 100, 13093–13112 (1995)Google Scholar
  21. 21.
    Durney, D.W.: Solution-transfer, an important geological deformation mechanism. Nature 235, 315–317 (1972)ADSGoogle Scholar
  22. 22.
    Elliott, D.: Diffusion flow laws in metamorphic rocks. Geol. Soc. Am. Bull. 84, 2645–2664 (1973)ADSGoogle Scholar
  23. 23.
    Etheridge, M.A., Wall, V.J., Cox, S.F., Vernon, R.H.: High fluid pressures during regional metamorphism and deformation: implications for mass-transport and deformation mechanisms. J. Geophys. Res. 89, 4344–4358 (1984)ADSGoogle Scholar
  24. 24.
    Fam, M.A., Cascante, G., Dusseault, M.B.: Large and small strain properties of sands subjected to local void increase. J. Geotech. Geoenviron. Eng. 128, 1018–1025 (2002)Google Scholar
  25. 25.
    Fowler, A.C., Yang, X.S.: Pressure solution and viscous compaction in sedimentary basins. J. Geophys. Res. Solid Earth 104, 12989–12997 (1999)Google Scholar
  26. 26.
    Garven, G.: Continental-scale groundwater flow and geologic processes. Annu. Rev. Earth Planet. Sci. 23, 89–117 (1995)ADSGoogle Scholar
  27. 27.
    Gratier, J.P., Guiguet, R., Renard, F., Jenatton, L., Bernard, D.: A pressure solution creep law for quartz from indentation experiments. J. Geophys. Res. Solid Earth 114, B03403 (2009)ADSGoogle Scholar
  28. 28.
    Groshong, R.H.: Strain, fractures, and pressure solution in natural single-layer folds. Geol. Soc. Am. Bull. 86, 1363–1376 (1975)ADSGoogle Scholar
  29. 29.
    Hellmann, R., Gratier, J.P., Chen, T.: Mineral-water interactions and stress: pressure solution of halite aggregates. In: Arehart, G., Hulston, J. (eds.) Water–Rock Interaction, pp. 777–780. Balkema, Rotterdam (1998)Google Scholar
  30. 30.
    Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000)Google Scholar
  31. 31.
    Kuhn, M.R., Mitchell, J.K.: New perspectives on soil-creep. J. Geotech. Eng. ASCE 119, 507–524 (1993)Google Scholar
  32. 32.
    Lade, P.V.: Instability, shear banding, and failure in granular materials. Int. J. Solids Struct. 39, 3337–3357 (2002)Google Scholar
  33. 33.
    Lawrence, G.W.M., Cartwright, J.A.: The initiation of sliding on the mid Norway margin in the Møre Basin. Mar. Geol. 259, 21–35 (2009)ADSGoogle Scholar
  34. 34.
    Lehner, F.K.: A model for intergranular pressure solution in open systems. Tectonophysics 245, 153–170 (1995)ADSGoogle Scholar
  35. 35.
    Marone, C., Scholz, C.: Particle-size distribution and microstructures within simulated fault gouge. J. Struct. Geol. 11, 799–814 (1989)ADSGoogle Scholar
  36. 36.
    McDowell, G.R., Khan, J.J.: Creep of granular materials. Granul. Matter 5, 115–120 (2003)Google Scholar
  37. 37.
    Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)Google Scholar
  38. 38.
    Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials. Granul. Matter 12, 527–541 (2010)zbMATHGoogle Scholar
  39. 39.
    Niemeijer, A., Elsworth, D., Marone, C.: Significant effect of grain size distribution on compaction rates in granular aggregates. Earth Planet. Sci. Lett. 284, 386–391 (2009)ADSGoogle Scholar
  40. 40.
    Niemeijer, A., Marone, C., Elsworth, D.: Healing of simulated fault gouges aided by pressure solution: results from rock analogue experiments. J. Geophys. Res. Solid Earth 113, B04204 (2008)ADSGoogle Scholar
  41. 41.
    Niemeijer, A., Spiers, C.J., Bos, B.: Compaction creep of quartz sand at 400–600°C: experimental evidence for dissolution-controlled pressure solution. Earth Planet. Sci. Lett. 195, 261–275 (2002)ADSGoogle Scholar
  42. 42.
    O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. Taylor & Francis, New York (2011)Google Scholar
  43. 43.
    Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48, 465–481 (1998)Google Scholar
  44. 44.
    Park, W.C., Schot, E.H.: Stylolites: their nature and origin. J. Sediment. Res. 38, 175–191 (1968)Google Scholar
  45. 45.
    Raj, R.: Creep in polycrystalline aggregates by matter transport through a liquid-phase. J. Geophys. Res. 87, 4731–4739 (1982)ADSGoogle Scholar
  46. 46.
    Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular-materials. Geotechnique 39, 601–614 (1989)Google Scholar
  47. 47.
    Rudnicki, J.W., Rice, J.R.: Conditions for localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–394 (1975)ADSGoogle Scholar
  48. 48.
    Rutter, E.H.: Pressure solution in nature, theory and experiment. J. Geol. Soc. 140, 725–740 (1983)ADSGoogle Scholar
  49. 49.
    Shimizu, I.: Kinetics of pressure solution creep in quartz—theoretical considerations. Tectonophysics 245, 121–134 (1995)ADSGoogle Scholar
  50. 50.
    Shin, H., Santamarina, J.C.: Mineral dissolution and the evolution of k0. J. Geotech. Geoenviron. Eng. 135, 1141–1147 (2009)Google Scholar
  51. 51.
    Shin, H., Santamarina, J.C., Cartwright, J.A.: Contraction-driven shear failure in compacting uncemented sediments. Geology 36, 931–934 (2008)ADSGoogle Scholar
  52. 52.
    Shin, H., Santamarina, J.C., Cartwright, J.A.: Displacement field in contraction-driven faults. J. Geophys. Res. Solid Earth 115, B07408 (2010)ADSGoogle Scholar
  53. 53.
    Sibson, R.H.: Earthquakes and rock deformation in crustal fault zones. Annu. Rev. Earth Planet. Sci. 14, 149–175 (1986)ADSGoogle Scholar
  54. 54.
    Spiers, C., Schutjens, P., Brzesowsky, R., Peach, C., Liezenberg, J., Zwart, H.: Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. Geol. Soc. Lond. Spec. Publ. 54, 215–227 (1990)ADSGoogle Scholar
  55. 55.
    Sprunt, E.S., Nur, A.: Destruction of porosity through pressure solution. Geophysics 42, 726–741 (1977)ADSGoogle Scholar
  56. 56.
    Tada, R., Siever, R.: Pressure solution during diagenesis. Annu. Rev. Earth Planet. Sci. 17, 89–118 (1989)ADSGoogle Scholar
  57. 57.
    Terzaghi, K., Peck, R.B., Mesri, G.: Soil Mechanics in Engineering Practice, 3rd edn. Wiley-Interscience, Hoboken (1996)Google Scholar
  58. 58.
    Toussaint, R., Aharonov, E., Koehn, D., Gratier, J.P., Ebner, M., Baud, P., Rolland, A., Renard, F.: Stylolites: a review. J. Struct. Geol. 114, 163–195 (2018)ADSGoogle Scholar
  59. 59.
    Tran, M.K., Shin, H., Byun, Y.-H., Lee, J.-S.: Mineral dissolution effects on mechanical strength. Eng. Geol. 125, 26–34 (2012)Google Scholar
  60. 60.
    Truong, Q.H., Eom, Y.H., Lee, J.S.: Stiffness characteristics of soluble mixtures. Géotechnique 60, 293–297 (2010)Google Scholar
  61. 61.
    Visser, H., Spiers, C., Hangx, S.: Effects of interfacial energy on compaction creep by intergranular pressure solution: theory versus experiments on a rock analog (NaNO3). J. Geophys. Res. Solid Earth 117, B11211 (2012)ADSGoogle Scholar
  62. 62.
    Yasuhara, H., Marone, C., Elsworth, D.: Fault zone restrengthening and frictional healing: the role of pressure solution. J. Geophys. Res. Solid Earth 110, B06310 (2005)ADSGoogle Scholar
  63. 63.
    Zhou, W., Yang, L., Ma, G., Xu, K., Lai, Z., Chang, X.: DEM modeling of shear bands in crushable and irregularly shaped granular materials. Granul. Matter 19, 25 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zachry Department of Civil and Environmental EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Earth Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations