Granular Matter

, 21:100 | Cite as

Poiseuille flow of a dilute binary granular mixture: hydrodynamics and segregation

  • Ronak GuptaEmail author
  • Meheboob Alam
Original Paper


We study the gravity-driven Poiseuille flow of a dilute binary granular mixture and report results on the hydrodynamic fields and species segregation. Direct Simulation Monte Carlo method is employed for a 50:50 binary mixture of different density, but same size particles with athermal channel walls. Effect of the mass bidispersity on velocity, granular temperature and number-density profiles is detailed, along with a quantification of energy non-equipartition in this flow. We uncover a non-monotonic species segregation along with a decreasing global segregation with increasing mass ratio.


Granular gas Binary mixture Direct simulation Monte Carlo Hydrodynamics Segregation 



R.G. would like to thank Achal Mahajan for helpful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no confict of interest.


  1. 1.
    Alam, M., Chikkadi, V.K.: Velocity distribution function and correlations in a granular Poiseuille flow. J. Fluid Mech. 653, 175–219 (2010)zbMATHADSGoogle Scholar
  2. 2.
    Alam, M., Luding, S.: How good is the equipartition assumption for the transport properties of a granular mixture? Granul. Matter 4(3), 139–142 (2002)zbMATHGoogle Scholar
  3. 3.
    Alam, M., Luding, S.: Rheology of bidisperse granular mixtures via event-driven simulations. J. Fluid Mech. 476, 69–103 (2003)zbMATHADSGoogle Scholar
  4. 4.
    Alam, M., Luding, S.: Energy nonequipartition, rheology and microstructure in sheared bidisperse granular mixtures. Phys. Fluid 17, 063303 (2005)MathSciNetzbMATHADSGoogle Scholar
  5. 5.
    Alam, M., Mahajan, A., Shivanna, D.: On Knudsen-minimum effect and temperature bimodality in a dilute granular Poiseuille flow. J. Fluid Mech. 782, 99–126 (2015)MathSciNetzbMATHADSGoogle Scholar
  6. 6.
    Alam, M., Trujillo, L., Herrmann, H.J.: Hydrodynamic theory for reverse Brazil nut segregation and the non-monotonic ascension dynamics. J. Stat. Phys. 124, 587–623 (2003)MathSciNetzbMATHADSGoogle Scholar
  7. 7.
    Alam, M., Willits, J.T., Arnarson, B.Ö., Luding, S.: Kinetic theory of a binary mixture of nearly elastic disks with size and mass disparity. Phys. Fluids 14(11), 4085–4087 (2002)zbMATHADSGoogle Scholar
  8. 8.
    Alaoui, M., Santos, A.: Poiseuille flow driven by an external force. Phys. Fluids A 4(6), 1273–1282 (1992)zbMATHADSGoogle Scholar
  9. 9.
    Ansari, I.H., Rivas, N., Alam, M.: Phase-coexisting patterns, horizontal segregation, and controlled convection in vertically vibrated binary granular mixtures. Phys. Rev. E 97(1), 012911 (2018)ADSGoogle Scholar
  10. 10.
    Barrat, A., Trizac, E.: Lack of energy equipartition in homogeneous heated binary granular mixtures. Granul. Matter 4(2), 57–63 (2002)zbMATHGoogle Scholar
  11. 11.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)Google Scholar
  12. 12.
    Cercignani, C., Daneri, A.: Flow of a rarefied gas between two parallel plates. J. Appl. Phys. 34(12), 3509–3513 (1963)MathSciNetADSGoogle Scholar
  13. 13.
    Chikkadi, V., Alam, M.: Slip velocity and stresses in granular Poiseuille flow via event-driven simulation. Phys. Rev. E 80(2), 021303 (2009)ADSGoogle Scholar
  14. 14.
    Farrell, M., Lun, C.K.K., Savage, S.B.: A simple kinetic theory for granular flow of binary mixtures of smooth, inelastic, spherical particles. Acta Mech. 63(1–4), 45–60 (1986)zbMATHGoogle Scholar
  15. 15.
    Feitosa, K., Menon, N.: Breakdown of energy equipartition in a 2D binary vibrated granular gas. Phys. Rev. Lett. 88(19), 198301 (2002)ADSGoogle Scholar
  16. 16.
    Galvin, J.E., Dahl, S.R., Hrenya, C.M.: On the role of non-equipartition in the dynamics of rapidly flowing granular mixtures. J. Fluid Mech. 528, 207–232 (2005)MathSciNetzbMATHADSGoogle Scholar
  17. 17.
    Garzo, V., Dufty, J.W.: Hydrodynamics for a granular binary mixture at low density. Phys. Fluids 14, 1476 (2002)zbMATHADSGoogle Scholar
  18. 18.
    Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35(1), 267–293 (2003)MathSciNetzbMATHADSGoogle Scholar
  19. 19.
    Gray, J.M.N.T.: Particle segregation in dense granular flows. Annu. Rev. Fluid Mech. 50, 407–433 (2018)MathSciNetzbMATHADSGoogle Scholar
  20. 20.
    Gupta, R., Alam, M.: Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow. Phys. Rev. E 95(2), 022903 (2017)MathSciNetADSGoogle Scholar
  21. 21.
    Gupta, R., Alam, M.: Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases. Phys. Rev. E 97(1), 012912 (2018)ADSGoogle Scholar
  22. 22.
    Hong, D.C., Quinn, P.V., Luding, S.: Reverse Brazil-nut problem: competition between percolation and condensation. Phys. Rev. Lett. 86, 3423–3425 (2001)ADSGoogle Scholar
  23. 23.
    Iddir, H., Arastoopour, H.: Modeling of multitype particle flow using the kinetic theory approach. AIChE J. 51(6), 1620–1632 (2005)Google Scholar
  24. 24.
    Jenkins, J.T., Mancini, F.: Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids. A 1(12), 2050–2057 (1989)MathSciNetzbMATHADSGoogle Scholar
  25. 25.
    Knight, J.B., Jaeger, H.M., Nagel, S.R.: Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett. 70(24), 3728 (1993)ADSGoogle Scholar
  26. 26.
    Knudsen, M.: The laws of molecular flow and internal friction flow of gases through tubes. Ann. Phys. (N. Y.) 333(1), 75–130 (1909)ADSGoogle Scholar
  27. 27.
    Kudrolli, A.: Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209–247 (2004)ADSGoogle Scholar
  28. 28.
    Liu, X., Metzger, M., Glasser, B.J.: Couette flow with a bidisperse particle mixture. Phys. Fluids 19(7), 073301 (2007)zbMATHADSGoogle Scholar
  29. 29.
    Liu, X., Metzger, M., Glasser, B.J.: Granular and gas-particle flows in a channel with a bidisperse particle mixture. Chem. Eng. Sci. 63(23), 5696–5713 (2008)Google Scholar
  30. 30.
    Loyalka, S.K., Hamoodi, S.A.: Poiseuille flow of a rarefied gas in a cylindrical tube: solution of linearized Boltzmann equation. Phys. Fluids A 2(11), 2061–2065 (1990)zbMATHADSGoogle Scholar
  31. 31.
    Martin, P.A., Piasecki, J.: Thermalization of a particle by dissipative collisions. Europhys. Lett. 46(5), 613 (1999)ADSGoogle Scholar
  32. 32.
    Montanero, J.M., Garzó, V.: Monte Carlo simulation of the homogeneous cooling state for a granular mixture. Granul. Matter 4(1), 17–24 (2002)zbMATHGoogle Scholar
  33. 33.
    Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32(1), 55–91 (2000)MathSciNetzbMATHADSGoogle Scholar
  34. 34.
    Pöschel, T., Herrmann, H.J.: Size segregation and convection. Europhys. Lett. 29, 123–128 (1993)ADSGoogle Scholar
  35. 35.
    Rongali, R., Alam, M.: Asymptotic expansion and Pade approximants for acceleration-driven Poiseuille flow of a rarefied gas: Bulk hydrodynamics and rheology. Phys. Rev. E 97(1), 012115 (2018)ADSGoogle Scholar
  36. 36.
    Rongali, R., Alam, M.: Asymptotic expansion and Pade approximants for gravity-driven flow of a heated granular gas: competition between inelasticity and rarefaction, up-to Burnett order. Phys. Rev. E 98(1), 052144 (2018)ADSGoogle Scholar
  37. 37.
    Santos, A., Tij, M.: Gravity-driven Poiseuille flow in dilute gases: elastic and inelastic collisions. In: Modelling and Numerics of Kinetic Dissipative Systems, Nova Science Publishers, New York (2006)Google Scholar
  38. 38.
    Savage, S.B., Lun, C.K.K.: Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311–335 (1988)ADSGoogle Scholar
  39. 39.
    Serero, D., Goldhirsch, I., Noskowicz, S.H., Tan, M.L.: Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554, 237–258 (2006)MathSciNetzbMATHADSGoogle Scholar
  40. 40.
    Shinbrot, T., Muzzio, F.J.: Reverse buoyancy in shaken granular beds. Phys. Rev. Lett. 81, 4365–4368 (1998)ADSGoogle Scholar
  41. 41.
    Tij, M., Sabbane, M., Santos, A.: Nonlinear Poiseuille flow in a gas. Phys. Fluids 10(4), 1021–1027 (1998)zbMATHADSGoogle Scholar
  42. 42.
    Tij, M., Santos, A.: Perturbation analysis of a stationary nonequilibrium flow generated by an external force. J. Stat. Phys. 76, 1399–1414 (1994)MathSciNetzbMATHADSGoogle Scholar
  43. 43.
    Tij, M., Santos, A.: Poiseuille flow in a heated granular gas. J. Stat. Phys. 117, 901–928 (2004)MathSciNetzbMATHADSGoogle Scholar
  44. 44.
    Trujillo, L., Alam, M., Herrmann, H.J.: Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric forces. Europhys. Lett. 64, 190–196 (2003)ADSGoogle Scholar
  45. 45.
    Vijayakumar, K.C., Alam, M.: Velocity distribution and the effect of wall roughness in granular Poiseuille flow. Phys. Rev. E 75(5), 051306 (2007)ADSGoogle Scholar
  46. 46.
    Wildman, R.D., Parker, D.J.: Energy nonequipartition in a vibrated granular gas mixture. Phys. Rev. Lett. 88(19), 064301 (2002)ADSGoogle Scholar
  47. 47.
    Willits, J.T., Arnarson, B.: Kinetic theory of a binary mixture of nearly elastic disks. Phys. Fluids 11(10), 3116–3122 (1999)zbMATHADSGoogle Scholar
  48. 48.
    Windows-Yule, C.R.K., Douglas, G.J.M., Parker, D.J.: Competition between geometrically induced and density-driven segregation mechanisms in vibrofluidized granular systems. Phys. Rev. E 91(3), 032205 (2015)ADSGoogle Scholar
  49. 49.
    Windows-Yule, C.R.K., Weinhart, T., Parker, D.J., Thornton, A.R.: Influence of thermal convection on density segregation in a vibrated binary granular system. Phys. Rev. E 89(2), 022202 (2014)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Mechanics UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.Department of Mechanical EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations