Granular Matter

, 21:82 | Cite as

Shear jamming and fragility in dense suspensions

  • Ryohei SetoEmail author
  • Abhinendra Singh
  • Bulbul Chakraborty
  • Morton M. Denn
  • Jeffrey F. Morris
Original Paper
Part of the following topical collections:
  1. In Memoriam of Robert P. Behringer, late Editor in Chief of Granular Matter


The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to create them. This peculiar flow-history dependence of the stress response is due to flow-induced microstructures. To examine jammed states realized under constant shear stress, we perform dynamic simulations of non-Brownian particles with frictional contact forces and hydrodynamic lubrication forces. We find clear signatures that distinguish these fragile states from the more conventional isotropic jammed states.


Shear jamming Suspension rheology Granular physics 



The authors would like to thank M. Otsuki, H. Hayakawa, and R. Mari for fruitful discussions. This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants Nos. 17H01083 and 17K05618. BC was supported by NSF-CBET-1605428, while JFM was supported by NSF-CBET-1605283. The research was also supported in part by the National Science Foundation under Grant No. NSF PHY-1748958. RS thanks R. Yamamoto for his full support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (m4v 12677 KB)


  1. 1.
    Denn, M.M., Morris, J.F., Bonn, D.: Shear thickening in concentrated suspensions of smooth spheres in newtonian suspending fluids. Soft Matter 14, 170–184 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    Guazzelli, É., Pouliquen, O.: Rheology of dense granular suspensions. J. Fluid Mech. 852, P1 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Einstein, A.: Eine neue bestimmung der moleküldimensionen. Ann. Phys. 19, 289–305 (1906)zbMATHCrossRefGoogle Scholar
  4. 4.
    Einstein, A.: Berichtigung zu meiner arbeit: ‘eine neue bestimmung der moleküldimensionen’. Ann. Physik 34, 591–592 (1911)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Denn, M.M., Morris, J.F.: Rheology of non-brownian suspensions. Annu. Rev. Chem. Biomol. Eng. 5(1), 203–228 (2014)CrossRefGoogle Scholar
  6. 6.
    Goddard, J.D.: A dissipative anisotropic fluid model for non-colloidal particle dispersions. J. Fluid Mech. 568, 1–17 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bertrand, E., Bibette, J., Schmitt, V.: From shear thickening to shear-induced jamming. Phys. Rev. E 66(6), 060401 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Peters, I.R., Majumdar, S., Jaeger, H.M.: Direct observation of dynamic shear jamming in dense suspensions. Nature 532, 214 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Singh, A., Mari, R., Denn, M.M., Morris, J.F.: A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62(2), 457–468 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Cates, M.E.: Stress transmission in jammed and granular matter, p. 369. IOP Publishing, Bristol (2000)Google Scholar
  11. 11.
    Cates, M.E., Wittmer, J.P., Bouchaud, J.P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 1841–1844 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Ness, C., Mari, R., Cates, M.E.: Shaken and stirred: random organization reduces viscosity and dissipation in granular suspensions. Sci. Adv. 4(3), eaar3296 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Bi, D., Zhang, J., Chakraborty, B., Behringer, R.P.: Jamming by shear. Nature 480, 355–358 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Ren, J., Dijksman, J.A., Behringer, R.P.: Reynolds pressure and relaxation in a sheared granular system. Phys. Rev. Lett. 110, 018302 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Sarkar, S., Bi, D., Zhang, J., Behringer, R., Chakraborty, B.: Origin of rigidity in dry granular solids. Phys. Rev. Lett. 111(6), 068301 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Sarkar, S., Bi, D., Zhang, J., Ren, J., Behringer, R.P., Chakraborty, B.: Shear-induced rigidity of frictional particles: analysis of emergent order in stress space. Phys. Rev. E 93, 042901 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Sarkar, S., Chakraborty, B.: Shear-induced rigidity in athermal materials: a unified statistical framework. Phys. Rev. E 91(4), 042201 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Otsuki, M., Hayakawa, H.: Shear jamming, discontinuous shear thickening, and fragile state in dry granular materials under oscillatory shear. arXiv:1810.03846 [cond-mat.soft] (2018)
  19. 19.
    Srivastava, I., Silbert, L.E., Grest, G.S., Lechman, J.B.: Flow-arrest transitions in frictional granular matter. Phys. Rev. Lett. 122, 048003 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    Brady, J.F., Bossis, G.: Stokesian dynamics. Annu. Rev. Fluid Mech. 20(1), 111–157 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    Melrose, J.R., Ball, R.C.: The pathological behaviour of sheared hard spheres with hydrodynamic interactions. Europhys. Lett. 32, 535–540 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    Morris, J.F.: Lubricated-to-frictional shear thickening scenario in dense suspensions. Phys. Rev. Fluids 3, 110508 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Seto, R., Mari, R., Morris, J.F., Denn, M.M.: Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111, 218301 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Mari, R., Seto, R., Morris, J.F., Denn, M.M.: Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E 91, 052302 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Ball, R.C., Melrose, J.R.: A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces. Physica A 247(1), 444–472 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Jeffrey, D.J., Onishi, Y.: Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261–290 (1984)ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Wilson, H.J., Davis, R.H.: Shear stress of a monolayer of rough spheres. J. Fluid Mech. 452, 425–441 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Mari, R., Seto, R., Morris, J.F., Denn, M.M.: Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58(6), 1693–1724 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Seto, R., Giusteri, G.G., Martiniello, A.: Microstructure and thickening of dense suspensions under extensional and shear flows. J. Fluid Mech. 825, R3 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10, 235–246 (2008)zbMATHCrossRefGoogle Scholar
  31. 31.
    Gadala-Maria, F., Acrivos, A.: Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24(6), 799–814 (1980)ADSCrossRefGoogle Scholar
  32. 32.
    Henkes, S., van Hecke, M., van Saarloos, W.: Critical jamming of frictional grains in the generalized isostaticity picture. Europhys. Lett. 90(1), 14003 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Ciamarra, M.P., Coniglio, A.: Random very loose packings. Phys. Rev. Lett. 101, 128001 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Onoda, G.Y., Liniger, E.G.: Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727–2730 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    Giusteri, G.G., Seto, R.: A theoretical framework for steady-state rheometry in generic flow conditions. J. Rheol. 62(3), 713–723 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Behringer, R.P., Chakraborty, B.: The physics of jamming for granular materials: a review. Rep. Prog. Phys. 82(1), 012601 (2019)ADSCrossRefGoogle Scholar
  37. 37.
    Baity-Jesi, M., Goodrich, C.P., Liu, A.J., Nagel, S.R., Sethna, J.P.: Emergent SO(3) symmetry of the frictionless shear jamming transition. J. Stat. Phys. 167(3), 735–748 (2017)ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Barnes, H.A.: Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33(2), 329–366 (1989)ADSCrossRefGoogle Scholar
  39. 39.
    Reynolds, O.: On the dilatancy of media composed of rigid particles in contact, with experimental illustrations. Philos. Mag. 20(5), 469–481 (1885)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKyoto UniversityKyotoJapan
  2. 2.Benjamin Levich InstituteCUNY City College of New YorkNew YorkUSA
  3. 3.Pritzker School of Molecular Engineering and James Franck InstituteThe University of ChicagoChicagoUSA
  4. 4.Martin Fisher School of PhysicsBrandeis UniversityWalthamUSA
  5. 5.Benjamin Levich Institute and Department of Chemical EngineeringCUNY City College of New YorkNew YorkUSA

Personalised recommendations