Skip to main content
Log in

Towards a theoretical understanding of dustiness

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

While there are plenty of experimental studies pertaining to the dust generation from and dustiness of powders, few of them aim at reaching a theoretical understanding of the phenomena. In the present article, the literature on dustiness has been systematically reviewed with respect to its contribution to a better comprehension of the processes involved. The majority of industrial raw materials exist in the form of dry powders. Due to the complex interplay of multiple parameters, a theoretical understanding of dust generation processes is not trivial and presently relies on experimental studies using bench top testers called dustiness testers. Given the existence of several reviews about dustiness testers, the present review is limited to the presentation of the drop test and the rotating drum and a relatively new tester, the vortex shaker. The vortex shaker uses mechanical agitation (‘shaking’) of a small bulk solid sample to generate dust particles. Parametric studies related to sample mass, particle size and particle size distribution, moisture content, bulk density, particle shape, temporal evolution, angle of repose, and cohesion were reviewed. Approaches to modelling dustiness have been systematically reviewed. The simplest and most straightforward one consists of defining the dust emission as a result of empirical terms describing the ratio between the cohesion and separation forces. Good results could be reached through that approach but its simplistic assumptions may limit its validity to narrow ranges of conditions the parameters must be adapted to. To reach a more systematic understanding, numerical modelling methods such as computational fluid dynamics and discrete element method must be considered. Their combined use along with population balance modelling is currently the most complete approach but it is computationally very demanding. In order to make progress in theoretical dustiness studies, both the simplified and the numerical modelling approaches should be followed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hazard prevention and control in the work environment: airbornedust. Technical report. World Health Organization and others (1999)

  2. Iso 4225 : Air quality—general aspects—vocabulary. Technical report International Organization for Standardization (1994)

  3. Klippel, A., Schmidt, M., Krause, U.: Dustiness in workplace safety and explosion protection—review and outlook. J. Loss Prev. Process Ind. 34, 22 (2015)

    Google Scholar 

  4. Junemann, R., Holzhauer, R.: Reduction of bulk emissions in bulk handling installations. Bulk Solids Handl. 12(2), 217 (1992)

    Google Scholar 

  5. Liu, Z., Wypych, P., Cooper, P.: Dust generation and air entrainment in bulk materials handling—a review. Powder handl. Process. 11(4), 421 (1999)

    Google Scholar 

  6. H.D. of Respiratory Disease Studies, Work-related Lung DiseaseSurveillance Report, 1996. pp. 96-134 US Department of Health andHuman Services, Public Health Service, Centers... (1996)

  7. Iossifova, Y., Bailey, R., Wood, J., Kreiss, K.: Concurrent silicosis and pulmonary mycosis at death. Emerg. Infect. Dis. 16(2), 318 (2010)

    Google Scholar 

  8. Levy, A., Kalman, C.J.: Handbook of Conveying and Handling of Particulate Solids, vol. 10. Elsevier, Amsterdam (2001)

    Google Scholar 

  9. Hinds, W.C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley, New York (2012)

    Google Scholar 

  10. LidÉN, G.: Dustiness testing of materials handled at workplaces. Ann. Occup. Hyg. 50(5), 437 (2006)

    Google Scholar 

  11. de Normalisation, C.E.: Workplace atmospheres: size fraction definitions for measurement of airborne particles in the workplace. CEN Standard EN, vol. 481 (1992)

  12. Malda, J., Frondoza, C.G.: Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 24(7), 299 (2006)

    Google Scholar 

  13. Bell, A.T.: The impact of nanoscience on heterogeneous catalysis. Science 299(5613), 1688 (2003)

    ADS  Google Scholar 

  14. Li, Y., Somorjai, G.A.: Nanoscale advances in catalysis and energy applications. Nano Lett. 10(7), 2289 (2010)

    ADS  Google Scholar 

  15. Gundogdu, O., Jenneson, P.: Understanding nanoagglomerates. Adv. Sci. Lett. 1(2), 161 (2008)

    Google Scholar 

  16. Brune, H., Ernst, H., Grunwald, A., Grünwald, W., Hofmann, H., Krug, H., Janich, P., Mayor, M., Rathgeber, W., Schmid, G., et al.: Nanotechnology: Assessment and Perspectives, vol. 27. Springer, Berlin (2006)

    Google Scholar 

  17. Plitzko, S., Gierke, E.: Tätigkeiten mit nanomaterialien in deutschland–gemeinsame fragebogenaktion der bundesanstalt für arbeitsschutz und arbeitsmedizin (baua) und des verbands der chemischen industrie. Gefahrstoffe Reinhaltung der Luft (german edition) 67(10), 419 (2007)

  18. Peters, T.M., Elzey, S., Johnson, R., Park, H., Grassian, V.H., Maher, T., O’Shaughnessy, P.: Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J. Occup. Environ. Hyg. 6(2), 73 (2008)

    Google Scholar 

  19. Evans, D.E., Ku, B.K., Birch, M.E., Dunn, K.H.: Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann. Occup. Hyg. 54(5), 514 (2010)

    Google Scholar 

  20. Evans, D.E., Turkevich, L.A., Roettgers, C.T., Deye, G.J., Baron, P.A.: Dustiness of fine and nanoscale powders. Ann. Occup. Hyg. 57(2), 261 (2012)

    Google Scholar 

  21. Hamelmann, F., Schmidt, E.: Methods of estimating the dustiness of industrial powders—a review. KONA Powder Part. J. 21, 7 (2003)

    Google Scholar 

  22. Breum, N., Schneider, T., Jørgensen, O., Valdbjørn Rasmussen, T., Skibstrup Eriksen, S.: Cellulosic building insulation versus mineral wool, fiberglass or perlite: installer’s exposure by inhalation of fibers, dust, endotoxin and fire-retardant additives. Ann. Occup. Hyg. 47(8), 653 (2003)

    Google Scholar 

  23. Madsen, A., Mårtensson, L., Schneider, T., Larsson, L.: Microbial dustiness and particle release of different biofuels. Ann. Occup. Hyg. 48(4), 327 (2004)

    Google Scholar 

  24. Madsen, A.M.: Exposure to airborne microbial components in autumn and spring during work at Danish biofuel plants. Ann. Occup. Hyg. 50(8), 821 (2006)

    Google Scholar 

  25. Heitbrink, W.A., Todd, W.F., Fischbach, T.J.: Correlation of tests for material dustiness with worker exposure from the bagging of powders. Appl. Ind. Hyg. 4(1), 12 (1989)

    Google Scholar 

  26. Heitbrink, W.A., Todd, W.F., Cooper, T.C., O’Brien, D.M.: The application of dustiness tests to the prediction of worker dust exposure. Am. Ind. Hyg. Assoc. J. 51(4), 217 (1990)

    Google Scholar 

  27. Cowherd, C., Grelinger, M.A., Wong, K.F.: Dust inhalation exposures from the handling of small volumes of powders. Am. Ind. Hyg. Assoc. J. 50(3), 131 (1989)

    Google Scholar 

  28. Class, P., deghilage, P., Brown, R.: Dustiness of different high-temperature insulation wools and refractory ceramic fibres. Ann. Occup. Hyg. 45(5), 381 (2001)

    Google Scholar 

  29. Petavratzi, E., Kingman, S., Lowndes, I.: Particulates from mining operations: a review of sources, effects and regulations. Miner. Eng. 18(12), 1183 (2005)

    Google Scholar 

  30. Tsai, C.J., Huang, C.Y., Chen, S.C., Ho, C.E., Huang, C.H., Chen, C.W., Chang, C.P., Tsai, S.J., Ellenbecker, M.J.: Exposure assessment of nano-sized and respirable particles at different workplaces. J. Nanopart. Res. 13(9), 4161 (2011). https://doi.org/10.1007/s11051-011-0361-8

    Article  ADS  Google Scholar 

  31. Dubey, P., Ghia, U., Turkevich, L.A.: Computational fluid dynamics analysis of the venturi dustiness tester. Powder Technol. 312, 310 (2017). https://doi.org/10.1016/j.powtec.2017.02.030

    Article  Google Scholar 

  32. Pujara, C., Kildsig, D.: Effect of individual particle characteristics on airborne emissions. Drugs Pharm. Sci. 108, 29 (2001)

    Google Scholar 

  33. Blome, H.: Umgang mit partikelförmigen schadstoffen. Sich. Arb. 1, 19 (2001)

    Google Scholar 

  34. Barig, A., Blome, H.: Allgemeiner Staubgrenzwert. Gefahrst. Reinhalt. Luft 62(1), 2 (2002)

    Google Scholar 

  35. Plinke, M.A., Leith, D., Boundy, M.G., Löffler, F.: Dust generation from handling powders in industry. Am. Ind. Hyg. Assoc. J. 56(3), 251 (1995). https://doi.org/10.1080/15428119591017088

    Article  Google Scholar 

  36. Plinke, M., Leith, D., Hathaway, R., Loeffler, F.: Cohesion in granular materials. Bulk Solids Handl. 14(1), 101 (1994)

    Google Scholar 

  37. Petavratzi, E., Kingman, S., Lowndes, I.: Assessment of the dustiness and the dust liberation mechanisms of limestone quarry operations. Chem. Eng. Process.: Process Intensif. 46(12), 1412 (2007). https://doi.org/10.1016/j.cep.2006.11.005

    Article  Google Scholar 

  38. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  39. Holmes, N., Morawska, L.: A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmos. Environ. 40(30), 5902 (2006). https://doi.org/10.1016/j.atmosenv.2006.06.003

    Article  ADS  Google Scholar 

  40. Blöschl, G., Sivapalan, M.: Scale issues in hydrological modelling: a review. Hydrol. Process. 9(3–4), 251 (1995)

    ADS  Google Scholar 

  41. Gill, T.E., Zobeck, T.M., Stout, J.E.: Technologies for laboratory generation of dust from geological materials. J. Hazard. Mater. 132(1), 1 (2006). https://doi.org/10.1016/j.jhazmat.2005.11.083

    Article  Google Scholar 

  42. Reznik, G., Klenk, U., Schmidt, E.: Untersuchungen zur Staubungsneigung von Braunkohle unterschiedlicher Feuchte. Chem. Ing. Tech. 78(12), 1885 (2006). https://doi.org/10.1002/cite.200600072

    Article  Google Scholar 

  43. Nichols, G., Byard, S., Bloxham, M.J., Botterill, J., Dawson, N.J., Dennis, A., Diart, V., North, N.C., Sherwood, J.D.: A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J. Pharm. Sci. 91(10), 2103 (2002). https://doi.org/10.1002/jps.10191

    Article  Google Scholar 

  44. Bihan, O.L.C.L., Ustache, A., Bernard, D., Aguerre-Chariol, O., Morgeneyer, M.: Experimental study of the aerosolization from a carbon nanotube bulk by a vortex shaker. J. Nanomater. 2014, 1 (2014). https://doi.org/10.1155/2014/193154

    Article  Google Scholar 

  45. Boundy, M., Leith, D., Polton, T.: Method to evaluate the dustiness of pharmaceutical powders. Ann. Occup. Hyg. 50(5), 453 (2006)

    Google Scholar 

  46. Saleh, K., Jaoude, M.T.M.A., Morgeneyer, M., Lefrancois, E., Bihan, O.L., Bouillard, J.: Dust generation from powders: a characterization test based on stirred fluidization. Powder Technol. 255, 141 (2014). https://doi.org/10.1016/j.powtec.2013.10.051

    Article  Google Scholar 

  47. C. EN 15051. European committee for standardization, Brussels (2006)

  48. Morgeneyer, M., Le Bihan, O., Ustache, A., Aguerre-Chariol, O.: Experimental study of the aerosolization of fine alumina particles from bulk by a vortex shaker. Powder Technol. 246, 583 (2013)

    Google Scholar 

  49. Pensis, I., Mareels, J., Dahmann, D., Mark, D.: Comparative evaluation of the dustiness of industrial minerals according to European standard EN 15051. Ann. Occup. Hyg. 54(2), 204–216 (2009)

    Google Scholar 

  50. Stauber, D., Beutel, R.: Determination and control of the dusting potential of feed premixes. Fresenius’ Z. Anal. Chem. 318(7), 522 (1984). https://doi.org/10.1007/bf00678754

    Article  Google Scholar 

  51. Hjemsted, K., Schneider, T.: Documentation of a dustiness drum test. Ann. Occup. Hyg. 40(6), 627 (1996)

    Google Scholar 

  52. Maynard, A.D., Baron, P.A., Foley, M., Shvedova, A.A., Kisin, E.R., Castranova, V.: Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health, Part A 67(1), 87 (2004). https://doi.org/10.1080/15287390490253688

    Article  Google Scholar 

  53. Ogura, I., Sakurai, H., Gamo, M.: Dustiness testing of engineered nanomaterials. J. Phys.: Conf. Ser. 170(1), 012003 (2009)

    Google Scholar 

  54. Plinke, M.A., Maus, R., Leith, D.: Experimental examination of factors that affect dust generation by using Heubach and MRI testers. Am. Ind. Hyg. Assoc. J. 53(5), 325 (1992)

    Google Scholar 

  55. Duan, M., Wang, Y., Ren, X., Qu, X., Cao, Y., Yang, Y., Nian, L.: Correlation analysis of three influencing factors and the dust production rate for a free-falling particle stream. Particuology 34, 126 (2017). https://doi.org/10.1016/j.partic.2017.03.003

    Article  Google Scholar 

  56. Wang, Y., Ren, X., Zhao, J., Chu, Z., Cao, Y., Yang, Y., Duan, M., Fan, H., Qu, X.: Experimental study of flow regimes and dust emission in a free falling particle stream. Powder Technol. 292, 14 (2016). https://doi.org/10.1016/j.powtec.2016.01.016

    Article  ADS  Google Scholar 

  57. Schofield, C., Sutton, H., Waters, K.: The generation of dust by materials handling operations. J. Powder Bulk Solids Technol. 3(3), 40–44 (1979)

    Google Scholar 

  58. Ding, Y., Stahlmecke, B., Kaminski, H., Jiang, Y., Kuhlbusch, T.A., Riediker, M.: Deagglomeration testing of airborne nanoparticle agglomerates: stability analysis under varied aerodynamic shear and relative humidity conditions. Aerosol Sci. Technol. 50(11), 1253 (2016)

    ADS  Google Scholar 

  59. Visser, G.: A wind-tunnel study of the dust emissions from the continuous dumping of coal. Atmos. Environ. Part A. Gen. Top. 26(8), 1453 (1992). https://doi.org/10.1016/0960-1686(92)90130-d

    Article  ADS  Google Scholar 

  60. Chow, J.C., Watson, J.G., Houck, J.E., Pritchett, L.C., Rogers, C.F., Frazier, C.A., Egami, R.T., Ball, B.M.: A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions. Atmos. Environ. 28(21), 3463 (1994). https://doi.org/10.1016/1352-2310(94)90005-1

    Article  ADS  Google Scholar 

  61. Schneider, T., Jensen, K.A.: Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum. Ann. Occup. Hyg. 52(1), 23 (2007)

    Google Scholar 

  62. Stahlmecke, B., Wagener, S., Asbach, C., Kaminski, H., Fissan, H., Kuhlbusch, T.A.J.: Investigation of airborne nanopowder agglomerate stability in an orifice under various differential pressure conditions. J. Nanopart. Res. 11(7), 1625 (2009). https://doi.org/10.1007/s11051-009-9731-x

    Article  ADS  Google Scholar 

  63. Chung, K., Burdett, G.: Dustiness testing and moving towards a biologically relevant dustiness index. Ann. Occup. Hyg. 38(6), 945 (1994)

    Google Scholar 

  64. Breum, N.: The rotating drum dustiness tester: variability in dustiness in relation to sample mass, testing time, and surface adhesion. Ann. Occup. Hyg. 43(8), 557 (1999)

    Google Scholar 

  65. Ansart, R., De Ryck, A., Dodds, J.A., Roudet, M., Fabre, D., Charru, F.: Dust emission by powder handling: comparison between numerical analysis and experimental results. Powder Technol. 190(1–2), 274 (2009)

    Google Scholar 

  66. Bach, S., Schmidt, E.: Determining the dustiness of powders-a comparison of three measuring devices. Ann. Occup. Hyg. 52(8), 717 (2008)

    Google Scholar 

  67. Chakravarty, S., Le Bihan, O., Fischer, M., Morgeneyer, M.: In: EPJ Web of Conferences, vol. 140, p. 13018. EDP Sciences (2017)

  68. Han, J., Zhu, Z., Qian, H., Wohl, A.R., Beaman, C.J., Hoye, T.R., Macosko, C.W.: A simple confined impingement jets mixer for flash nanoprecipitation. J. Pharm. Sci. 101(10), 4018 (2012)

    Google Scholar 

  69. Jensen, K., Kembouche, Y., Christiansen, E., Jacobsen, N., Wallin, H., Guiot, C., Spalla, O., Witschger, O.: NANOGENOTOX Joint Action (2011)

  70. Ogura, I., Kotake, M., Sakurai, H., Gamo, M.: Emission and exposure assessment of manufactured nanomaterials. english version (26 october 2012). nedo project (p06041)“research and development of nanoparticle characterization methods.” (2012)

  71. Chen, X., Wheeler, C., Donohue, T., McLean, R., Roberts, A.: Evaluation of dust emissions from conveyor transfer chutes using experimental and CFD simulation. Int. J. Min. Process. 110, 101 (2012)

    Google Scholar 

  72. Heitbrink, W.A., Baron, P.A., Willeke, K.: An investigation of dust generation by free falling powders. Am. Ind. Hyg. Assoc. J. 53(10), 617 (1992)

    Google Scholar 

  73. Klinzing, G.E., Rizk, F., Marcus, R., Leung, L.: Pneumatic Conveying of Solids: A Theoretical and Practical Approach. Springer, Berlin (2011)

    Google Scholar 

  74. Stein, M., Seville, J., Parker, D.: Attrition of porous glass particles in a fluidised bed. Powder Technol. 100(2–3), 242 (1998)

    Google Scholar 

  75. Bemrose, C., Bridgwater, J.: A review of attrition and attrition test methods. Powder Technol. 49(2), 97 (1987)

    Google Scholar 

  76. Bailey, A.: Electrostatic phenomena during powder handling. Powder Technol. 37(1), 71 (1984)

    Google Scholar 

  77. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic press, New York (2011)

    Google Scholar 

  78. Seville, J., Willett, C., Knight, P.: Interparticle forces in fluidisation: a review. Powder Technol. 113(3), 261 (2000)

    Google Scholar 

  79. Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54(4), 263 (2005)

    ADS  Google Scholar 

  80. Pietsch, W.B.: Agglomeration Processes: Phenomena, Technologies, Equipment. Wiley, New York (2008)

    Google Scholar 

  81. Calin, L., Caliap, L., Neamtu, V., Morar, R., Iuga, A., Samuila, A., Dascalescu, L.: Tribocharging of granular plastic mixtures in view of electrostatic separation. IEEE Trans. Ind. Appl. 44(4), 1045 (2008)

    Google Scholar 

  82. Krupp, H.: Particles adhesion theory and experiment. Adv. Colloid Interface Sci. 1, 111 (1967)

    Google Scholar 

  83. Butt, H.J., Kappl, M.: Normal capillary forces. Adv. Colloid Interface Sci. 146(1–2), 48 (2009)

    Google Scholar 

  84. Seville, J., Tüzün, U., Clift, R.: Processing of particulate solids, vol. 9. Springer, Berlin (2012)

    Google Scholar 

  85. Schmidt, E.: Fractional release rate—a novel concept to quantify the dustiness of powders. Chem. Ing. Tech. 87(5), 638 (2015)

    Google Scholar 

  86. Davies, K., Hammond, C., Higman, R., Wells, A.: Progress in dustiness estimation: British occupational hygiene society technology committee working party on dustiness estimation. Ann. Occup. Hyg. 32(4), 535 (1988)

    Google Scholar 

  87. Lyons, C., Mark, D.: Development and Testing of a Procedure to Evaluate the Dustiness of Powders and Dusts in Industrial Use. HSE Books, Norwich (1994)

    Google Scholar 

  88. Pujara, C.P.: Determination of factors that affect the generation of airborne particles from bulk pharmaceutical powders. Thesis UMI number 9808505, Purdue University Graduate School (1997)

  89. Schofield, C.: Dust generation and control in materials handling. Bulk Solids Handl. 1(3), 419 (1981)

    Google Scholar 

  90. Sethi, S., Schneider, T.: A gas fluidization dustiness tester. J. Aerosol Sci. 27, S305 (1996)

    ADS  Google Scholar 

  91. Janhunen, H., Nylander, L., Heikkila, P., Raunemaa, T.: Improved dustiness testing using a three stage im-pactor. In: 3rd Finish Aerosol symposium, pp. 1–6. Finland, Sipoo (1988)

  92. Goodfellow, H., Smith, J.: In: Proceedings of Second International Symposium Ventilation for Contaminant Control, pp. 175–182 (1989)

  93. Farrugia, T., Ahmed, N., Jameson, G.: A new technique for measuring dustiness of coal. J. Coal Qual. 8(2), 51 (1989)

    Google Scholar 

  94. Westborg, S., Cortsen, C.: Determination of dustiness of coal by the rotating drum method. J. Coal Qual. 9(3), 77 (1990)

    Google Scholar 

  95. Bröckel, U., Wahl, M., Kirsch, R., Feise, H.J.: Formation and growth of crystal bridges in bulk solids. Chem. Eng. Technol.: Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 29(6), 691 (2006)

    Google Scholar 

  96. Jensen, K.A., Koponen, I.K., Clausen, P.A., Schneider, T.: Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk? J. Nanopart. Res. 11(1), 133 (2009)

    ADS  Google Scholar 

  97. Fu, X., Huck, D., Makein, L., Armstrong, B., Willen, U., Freeman, T.: Effect of particle shape and size on flow properties of lactose powders. Particuology 10(2), 203 (2012)

    Google Scholar 

  98. Leith, D.: Drag on nonspherical objects. Aerosol Sci. Technol. 6(2), 153 (1987)

    ADS  Google Scholar 

  99. Authier-Martin, M.: Essential Readings in Light Metals, pp. 774–782. Springer, Berlin (2016)

    Google Scholar 

  100. Hjemsted, K., Schneider, T.: Dustiness from powder materials. J. Aerosol Sci. 27, S485 (1996)

    ADS  Google Scholar 

  101. Olsen, D., Behrens, C., Hamberg, K., Prytz, A., Tveten, E.: In: Proceedings of the 6th International Alumina Quality Workshop 2002, pp. 1–9

  102. Chakravarty, S., Fischer, M., García-Triñanes, P., Dalle, M., Meunier, L., Aguerre-Chariol, O., Le Bihan, O., Morgeneyer, M.: Long-term dust generation from silicon carbide powders. Process Saf. Environ. Prot. 116, 115 (2018)

    Google Scholar 

  103. Prescott, J.K., Barnum, R.A.: On powder flowability. Pharm. Technol. 24(10), 60 (2000)

    Google Scholar 

  104. Ganesan, V., Rosentrater, K.A., Muthukumarappan, K.: Flowability and handling characteristics of bulk solids and powders—a review with implications for DDGS. Biosyst. Eng. 101(4), 425 (2008)

    Google Scholar 

  105. Iqbal, T., Fitzpatrick, J.: Effect of storage conditions on the wall friction characteristics of three food powders. J. Food Eng. 72(3), 273 (2006)

    Google Scholar 

  106. Teunou, E., Fitzpatrick, J., Synnott, E.: Characterisation of food powder flowability. J. Food Eng. 39(1), 31 (1999)

    Google Scholar 

  107. Teunou, E., Vasseur, J., Krawczyk, M.: Measurement and interpretation of bulk solids angle of repose for industrial process design. Powder Handl. Process. 7(3), 219 (1995)

    Google Scholar 

  108. Carr, R.L.: Evaluating flow properties of solids. Chem. Eng. 18, 163 (1965)

    Google Scholar 

  109. Hsieh, H.: Measurement of flowability and dustiness of alumina. Light Met. 1987, 139–149 (1987)

    Google Scholar 

  110. Clayton, J.: Reviewing current practice in powder testing. Org. Process Res. Dev. 19(1), 102 (2014)

    Google Scholar 

  111. Visser, J.: Van der Waals and other cohesive forces affecting powder fluidization. Powder Technol. 58(1), 1 (1989)

    Google Scholar 

  112. Shi, H., Mohanty, R., Chakravarty, S., Cabiscol, R., Morgeneyer, M., Zetzener, H., Ooi, J., Kwade, A., Luding, S.: Effect of particle size and cohesion on powder yielding and flow. KONA Powder Part. J. 35, 226–250 (2018)

    Google Scholar 

  113. Heitbrink, W.A.: Factors affecting the Heubach and MRI dustiness tests. Am. Ind. Hyg. Assoc. J. 51(4), 210 (1990)

    Google Scholar 

  114. Forsythe, W., Hertwig, W.: Attrition characteristics of fluid cracking catalysts. Ind. Eng. Chem. 41(6), 1200 (1949)

    Google Scholar 

  115. Olsen, D.: In: Fifth International Alumina Quality Workshop, pp. 1–11. WA, Australia, Bunbury (1999)

  116. Nabeel, M., Karasev, A., Jönsson, P.G.: Evaluation of dust generation during mechanical wear of iron ore pellets. ISIJ Intl. 56(6), 960–966 (2016)

    Google Scholar 

  117. Chakravarty, S., Fischer, M., García-Triñanes, P., Parker, D., Le Bihan, O., Morgeneyer, M.: Study of the particle motion induced by a vortex shaker. Powder Technol. 322, 54–64 (2017)

    Google Scholar 

  118. Hutchings, I.: Mechanisms of wear in powder technology: a review. Powder Technol. 76(1), 3 (1993)

    Google Scholar 

  119. Boerefijn, R., Gudde, N., Ghadiri, M.: A review of attrition of fluid cracking catalyst particles. Adv. Powder Technol. 11(2), 145 (2000)

    Google Scholar 

  120. Lanning, J.S., Boundy, M.G., Leith, D.: Validating a model for the prediction of dust generation. Part. Sci. Technol. 13(2), 105 (1995)

    Google Scholar 

  121. Bansal, R.: A Textbook of Fluid Mechanics. Firewall Media, New Delhi (2005)

    Google Scholar 

  122. Jiang, X., Lai, C.H.: Numerical Techniques for Direct and Large—Eddy Simulations. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  123. Tabatabaian, M.: CFD Module: Turbulent Flow Modeling. Mercury Learning & Information, Herndon (2015)

    Google Scholar 

  124. Van Wachem, B., Schouten, J., Krishna, R., Van den Bleek, C.: Validation of the Eulerian simulated dynamic behaviour of gas–solid fluidised beds. Chem. Eng. Sci. 54(13–14), 2141 (1999)

    Google Scholar 

  125. Prasad, S., Gautam, A.: Role of momentum exchange coefficient in circulating fluidized-bed. Indian J. Chem. Technol. 14, 258–262 (2007)

    Google Scholar 

  126. Santos, D., Petri, I., Duarte, C., Barrozo, M.: Experimental and CFD study of the hydrodynamic behavior in a rotating drum. Powder Technol. 250, 52 (2013)

    Google Scholar 

  127. Hwang, G., Shen, H.: Modeling the solid phase stress in a fluid-solid mixture. Int. J. Multiph. Flow 15(2), 257 (1989)

    Google Scholar 

  128. Lun, C., Savage, S.B., Jeffrey, D., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223 (1984)

    ADS  MATH  Google Scholar 

  129. Karunarathne, S.S., Jayarathna, C.K., Tokheim, L.A.: Mixing and segregation in a rotating cylinder: CFD simulation and experimental study. Int. J. Model. Optim. 7(1), 1 (2017)

    Google Scholar 

  130. Zydak, P., Klemens, R.: Modelling of dust lifting process behind propagating shock wave. J. Loss Prev. Process Ind. 20(4–6), 417 (2007)

    Google Scholar 

  131. Cammarata, L., Lettieri, P., Micale, G.D., Colman, D.: 2D and 3D CFD simulations of bubbling fluidized beds using Eulerian-Eulerian models. Int. J. Chem. React. Eng. 1, 1–14 (2003)

  132. Li, Z., Kind, M., Gruenewald, G.: Modeling fluid dynamics and growth kinetics in fluidized bed spray granulation. J. Comput. Multiph. Flows 2(4), 235 (2010)

    Google Scholar 

  133. Esmaili, A., Donohue, T., Wheeler, W., McBride, C., Roberts, A.: In: 11th International Conference on Bulk Materials Storage. Handling and Transportation. ICBMH, Newcastle (2013)

  134. Esmaili, A., Donohue, T., Wheeler, C., McBride, W., Roberts, A.: On the analysis of a coarse particle free falling material stream. Int. J. Miner. Process. 142, 82 (2015)

    Google Scholar 

  135. García, M., Sommerer, Y., Schönfeld, T., Poinsot, T.: In: ECCOMAS Thematic Conference on Computational Combustion, vol. 30. Citeseer (2005)

  136. Capecelatro, J., Desjardins, O.: An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 1 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  137. Chiesa, M., Mathiesen, V., Melheim, J.A., Halvorsen, B.: Numerical simulation of particulate flow by the Eulerian–Lagrangian and the Eulerian–Eulerian approach with application to a fluidized bed. Comput. Chem. Eng. 29(2), 291 (2005)

    Google Scholar 

  138. Kosinski, P., Hoffmann, A.C., Klemens, R.: Dust lifting behind shock waves: comparison of two modelling techniques. Chem. Eng. Sci. 60(19), 5219 (2005)

    Google Scholar 

  139. Kosinski, P., Hoffmann, A.C.: An Eulerian–Lagrangian model for dense particle clouds. Comput. Fluids 36(4), 714 (2007)

    MATH  Google Scholar 

  140. Murillo, C., Dufaud, O., Bardin-Monnier, N., López, O., Munoz, F., Perrin, L.: Dust explosions: CFD modeling as a tool to characterize the relevant parameters of the dust dispersion. Chem. Eng. Sci. 104, 103 (2013)

    Google Scholar 

  141. Zhou, Y., Zhang, Z., Yuan, G.: Powder abrasion material in simulated space state. Mater. Sci. Eng. Powder Metall. 10(5), 50–54 (2005)

  142. Salman, A., Hounslow, M., Verba, A.: Particle fragmentation in dilute phase pneumatic conveying. Powder Technol. 126(2), 109 (2002)

    Google Scholar 

  143. Rhodes, M., Wang, X., Nguyen, M., Stewart, P., Liffman, K.: Use of discrete element method simulation in studying fluidization characteristics: influence of interparticle force. Chem. Eng. Sci. 56(1), 69 (2001)

    Google Scholar 

  144. Cleary, P.W.: Industrial particle flow modelling using discrete element method. Eng. Comput. 26(6), 698 (2009)

    Google Scholar 

  145. Kwapinska, M., Saage, G., Tsotsas, E.: Mixing of particles in rotary drums: a comparison of discrete element simulations with experimental results and penetration models for thermal processes. Powder Technol. 161(1), 69 (2006)

    Google Scholar 

  146. Alchikh-Sulaiman, B., Alian, M., Ein-Mozaffari, F., Lohi, A., Upreti, S.R.: Using the discrete element method to assess the mixing of polydisperse solid particles in a rotary drum. Particuology 25, 133 (2016)

    Google Scholar 

  147. Mishra, B., Thornton, C., Bhimji, D.: A preliminary numerical investigation of agglomeration in a rotary drum. Miner. Eng. 15(1–2), 27 (2002)

    Google Scholar 

  148. Yang, M., Li, S., Yao, Q.: Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete-element methods. Powder Technol. 248, 44 (2013)

    Google Scholar 

  149. Hiller, R., Löffler, F.: Influence of particle impact and adhesion on the collection efficiency of fibre filters. German Chem. Eng. 3, 327 (1980)

    Google Scholar 

  150. Lucci, F., Ferrante, A., Elghobashi, S.: Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size? Phys. Fluids 23(2), 025101 (2011)

    ADS  Google Scholar 

  151. Antonyuk, S., Khanal, M., Tomas, J., Heinrich, S., Mörl, L.: Impact breakage of spherical granules: experimental study and DEM simulation. Chem. Eng. Process.: Process Intens. 45(10), 838 (2006)

    Google Scholar 

  152. Tong, Z., Yang, R., Yu, A., Adi, S., Chan, H.: Numerical modelling of the breakage of loose agglomerates of fine particles. Powder Technol. 196(2), 213 (2009)

    Google Scholar 

  153. Thornton, C., Yin, K., Adams, M.: Numerical simulation of the impact fracture and fragmentation of agglomerates. J. Phys. D: Appl. Phys. 29(2), 424 (1996)

    ADS  Google Scholar 

  154. Moreno, R., Ghadiri, M., Antony, S.: Effect of the impact angle on the breakage of agglomerates: a numerical study using DEM. Powder Technol. 130(1–3), 132 (2003)

    Google Scholar 

  155. Liu, L., Kafui, K., Thornton, C.: Impact breakage of spherical, cuboidal and cylindrical agglomerates. Powder Technol. 199(2), 189 (2010)

    Google Scholar 

  156. Golchert, D., Moreno, R., Ghadiri, M., Litster, J.: Effect of granule morphology on breakage behaviour during compression. Powder Technol. 143, 84 (2004)

    Google Scholar 

  157. Chew, N.Y., Chan, H.K.: Influence of particle size, air flow, and inhaler device on the dispersion of mannitol powders as aerosols. Pharm. Res. 16(7), 1098 (1999)

    Google Scholar 

  158. Kawaguchi, T., Tanaka, T., Tsuji, Y.: Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two-and three-dimensional models). Powder Technol. 96(2), 129 (1998)

    Google Scholar 

  159. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Int. J. 12(2–3), 140 (2012)

    MathSciNet  Google Scholar 

  160. Chu, K., Wang, B., Xu, D., Chen, Y., Yu, A.: CFD-DEM simulation of the gas-solid flow in a cyclone separator. Chem. Eng. Sci. 66(5), 834 (2011)

    Google Scholar 

  161. Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: DEM/CFD–DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108 (2016)

    Google Scholar 

  162. Derakhshani, S.M., Schott, D.L., Lodewijks, G.: In: 11th International Conference on Bulk Materials Storage, Handling and Transportation, ICBMH 2013 (2013)

  163. LaMarche, C.Q., Liu, P., Kellogg, K.M., Weimer, A.W., Hrenya, C.M.: A system-size independent validation of CFD–DEM for noncohesive particles. AIChE J. 61(12), 4051 (2015)

    Google Scholar 

  164. Bagherzadeh, M.: Modelling single particle settlement by CFD-DEM coupling method. Thesis. Department of Transport and Planning, TU Delft University (2014)

  165. Tong, Z., Zheng, B., Yang, R., Yu, A., Chan, H.: CFD–DEM investigation of the dispersion mechanisms in commercial dry powder inhalers. Powder Technol. 240, 19 (2013)

    Google Scholar 

  166. Hilton, J., Cleary, P.: Dust modelling using a combined CFD and discrete element formulation. Int. J. Numer. Methods Fluids 72(5), 528 (2013)

    ADS  MathSciNet  Google Scholar 

  167. Brosh, T., Kalman, H., Levy, A.: Accelerating CFD–DEM simulation of processes with wide particle size distributions. Particuology 12, 113 (2014)

    Google Scholar 

  168. Yang, Y., Cheng, Y.: A fractal model of contact force distribution and the unified coordination distribution for crushable granular materials under confined compression. Powder Technol. 279, 1 (2015)

    ADS  MathSciNet  Google Scholar 

  169. Shigeto, Y., Sakai, M.: Parallel computing of discrete element method on multi-core processors. Particuology 9(4), 398 (2011)

    Google Scholar 

  170. Pinar, Z., Dutta, A., Bény, G., Öziş, T.: Analytical solution of population balance equation involving aggregation and breakage in terms of auxiliary equation method. Pramana 84(1), 9 (2014). https://doi.org/10.1007/s12043-014-0838-y

    Article  ADS  Google Scholar 

  171. Vanni, M.: Approximate population balance equations for aggregation-breakage processes. J. Colloid Interface Sci. 221(2), 143 (2000). https://doi.org/10.1006/jcis.1999.6571

    Article  ADS  Google Scholar 

  172. Diemer, R.B., Olson, J.H.: A moment methodology for coagulation and breakage problems: Part 1-analytical solution of the steady-state population balance. Chem. Eng. Sci. 57(12), 2193 (2002). https://doi.org/10.1016/s0009-2509(02)00111-2

    Article  Google Scholar 

  173. Ding, A., Hounslow, M., Biggs, C.: Population balance modelling of activated sludge flocculation: investigating the size dependence of aggregation, breakage and collision efficiency. Chem. Eng. Sci. 61(1), 63 (2006). https://doi.org/10.1016/j.ces.2005.02.074

    Article  Google Scholar 

  174. Kumar, J., Peglow, M., Warnecke, G., Heinrich, S.: An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technol. 182(1), 81 (2008). https://doi.org/10.1016/j.powtec.2007.05.028

    Article  Google Scholar 

  175. Patruno, L., Dorao, C., Svendsen, H., Jakobsen, H.: Analysis of breakage kernels for population balance modelling. Chem. Eng. Sci. 64(3), 501 (2009). https://doi.org/10.1016/j.ces.2008.09.029

    Article  Google Scholar 

  176. Nuyttens, D., Devarrewaere, W., Verboven, P., Foqué, D.: Pesticide-laden dust emission and drift from treated seeds during seed drilling: a review. Pest Manag. Sci. 69(5), 564 (2013)

    Google Scholar 

  177. Owoyemi, O., Lettieri, P., Place, R.: Experimental validation of eulerian- eulerian simulations of rutile industrial powders. Ind. Eng. Chem. Res. 44(26), 9996 (2005)

    Google Scholar 

  178. Patankar, N., Joseph, D.: Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach. Int. J. Multiph. Flow 27(10), 1659 (2001)

    MATH  Google Scholar 

  179. Di Renzo, A., Di Maio, F.P.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59(3), 525 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somik Chakravarty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Multiscale analysis of particulate micro- and macro-processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarty, S., Fischer, M., Bihan, O.L. et al. Towards a theoretical understanding of dustiness. Granular Matter 21, 97 (2019). https://doi.org/10.1007/s10035-019-0929-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0929-z

Keywords

Navigation