Granular Matter

, 21:97 | Cite as

Towards a theoretical understanding of dustiness

  • Somik ChakravartyEmail author
  • Marc Fischer
  • Olivier Le Bihan
  • Martin Morgeneyer
Original Paper
Part of the following topical collections:
  1. Multiscale analysis of particulate micro- and macro-processes


While there are plenty of experimental studies pertaining to the dust generation from and dustiness of powders, few of them aim at reaching a theoretical understanding of the phenomena. In the present article, the literature on dustiness has been systematically reviewed with respect to its contribution to a better comprehension of the processes involved. The majority of industrial raw materials exist in the form of dry powders. Due to the complex interplay of multiple parameters, a theoretical understanding of dust generation processes is not trivial and presently relies on experimental studies using bench top testers called dustiness testers. Given the existence of several reviews about dustiness testers, the present review is limited to the presentation of the drop test and the rotating drum and a relatively new tester, the vortex shaker. The vortex shaker uses mechanical agitation (‘shaking’) of a small bulk solid sample to generate dust particles. Parametric studies related to sample mass, particle size and particle size distribution, moisture content, bulk density, particle shape, temporal evolution, angle of repose, and cohesion were reviewed. Approaches to modelling dustiness have been systematically reviewed. The simplest and most straightforward one consists of defining the dust emission as a result of empirical terms describing the ratio between the cohesion and separation forces. Good results could be reached through that approach but its simplistic assumptions may limit its validity to narrow ranges of conditions the parameters must be adapted to. To reach a more systematic understanding, numerical modelling methods such as computational fluid dynamics and discrete element method must be considered. Their combined use along with population balance modelling is currently the most complete approach but it is computationally very demanding. In order to make progress in theoretical dustiness studies, both the simplified and the numerical modelling approaches should be followed.


Dustiness Powder Modelling CFD DEM 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hazard prevention and control in the work environment: airbornedust. Technical report. World Health Organization and others (1999)Google Scholar
  2. 2.
    Iso 4225 : Air quality—general aspects—vocabulary. Technical report International Organization for Standardization (1994)Google Scholar
  3. 3.
    Klippel, A., Schmidt, M., Krause, U.: Dustiness in workplace safety and explosion protection—review and outlook. J. Loss Prev. Process Ind. 34, 22 (2015)Google Scholar
  4. 4.
    Junemann, R., Holzhauer, R.: Reduction of bulk emissions in bulk handling installations. Bulk Solids Handl. 12(2), 217 (1992)Google Scholar
  5. 5.
    Liu, Z., Wypych, P., Cooper, P.: Dust generation and air entrainment in bulk materials handling—a review. Powder handl. Process. 11(4), 421 (1999)Google Scholar
  6. 6.
    H.D. of Respiratory Disease Studies, Work-related Lung DiseaseSurveillance Report, 1996. pp. 96-134 US Department of Health andHuman Services, Public Health Service, Centers... (1996)Google Scholar
  7. 7.
    Iossifova, Y., Bailey, R., Wood, J., Kreiss, K.: Concurrent silicosis and pulmonary mycosis at death. Emerg. Infect. Dis. 16(2), 318 (2010)Google Scholar
  8. 8.
    Levy, A., Kalman, C.J.: Handbook of Conveying and Handling of Particulate Solids, vol. 10. Elsevier, Amsterdam (2001)Google Scholar
  9. 9.
    Hinds, W.C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley, New York (2012)Google Scholar
  10. 10.
    LidÉN, G.: Dustiness testing of materials handled at workplaces. Ann. Occup. Hyg. 50(5), 437 (2006)Google Scholar
  11. 11.
    de Normalisation, C.E.: Workplace atmospheres: size fraction definitions for measurement of airborne particles in the workplace. CEN Standard EN, vol. 481 (1992)Google Scholar
  12. 12.
    Malda, J., Frondoza, C.G.: Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 24(7), 299 (2006)Google Scholar
  13. 13.
    Bell, A.T.: The impact of nanoscience on heterogeneous catalysis. Science 299(5613), 1688 (2003)ADSGoogle Scholar
  14. 14.
    Li, Y., Somorjai, G.A.: Nanoscale advances in catalysis and energy applications. Nano Lett. 10(7), 2289 (2010)ADSGoogle Scholar
  15. 15.
    Gundogdu, O., Jenneson, P.: Understanding nanoagglomerates. Adv. Sci. Lett. 1(2), 161 (2008)Google Scholar
  16. 16.
    Brune, H., Ernst, H., Grunwald, A., Grünwald, W., Hofmann, H., Krug, H., Janich, P., Mayor, M., Rathgeber, W., Schmid, G., et al.: Nanotechnology: Assessment and Perspectives, vol. 27. Springer, Berlin (2006)Google Scholar
  17. 17.
    Plitzko, S., Gierke, E.: Tätigkeiten mit nanomaterialien in deutschland–gemeinsame fragebogenaktion der bundesanstalt für arbeitsschutz und arbeitsmedizin (baua) und des verbands der chemischen industrie. Gefahrstoffe Reinhaltung der Luft (german edition) 67(10), 419 (2007)Google Scholar
  18. 18.
    Peters, T.M., Elzey, S., Johnson, R., Park, H., Grassian, V.H., Maher, T., O’Shaughnessy, P.: Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J. Occup. Environ. Hyg. 6(2), 73 (2008)Google Scholar
  19. 19.
    Evans, D.E., Ku, B.K., Birch, M.E., Dunn, K.H.: Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann. Occup. Hyg. 54(5), 514 (2010)Google Scholar
  20. 20.
    Evans, D.E., Turkevich, L.A., Roettgers, C.T., Deye, G.J., Baron, P.A.: Dustiness of fine and nanoscale powders. Ann. Occup. Hyg. 57(2), 261 (2012)Google Scholar
  21. 21.
    Hamelmann, F., Schmidt, E.: Methods of estimating the dustiness of industrial powders—a review. KONA Powder Part. J. 21, 7 (2003)Google Scholar
  22. 22.
    Breum, N., Schneider, T., Jørgensen, O., Valdbjørn Rasmussen, T., Skibstrup Eriksen, S.: Cellulosic building insulation versus mineral wool, fiberglass or perlite: installer’s exposure by inhalation of fibers, dust, endotoxin and fire-retardant additives. Ann. Occup. Hyg. 47(8), 653 (2003)Google Scholar
  23. 23.
    Madsen, A., Mårtensson, L., Schneider, T., Larsson, L.: Microbial dustiness and particle release of different biofuels. Ann. Occup. Hyg. 48(4), 327 (2004)Google Scholar
  24. 24.
    Madsen, A.M.: Exposure to airborne microbial components in autumn and spring during work at Danish biofuel plants. Ann. Occup. Hyg. 50(8), 821 (2006)Google Scholar
  25. 25.
    Heitbrink, W.A., Todd, W.F., Fischbach, T.J.: Correlation of tests for material dustiness with worker exposure from the bagging of powders. Appl. Ind. Hyg. 4(1), 12 (1989)Google Scholar
  26. 26.
    Heitbrink, W.A., Todd, W.F., Cooper, T.C., O’Brien, D.M.: The application of dustiness tests to the prediction of worker dust exposure. Am. Ind. Hyg. Assoc. J. 51(4), 217 (1990)Google Scholar
  27. 27.
    Cowherd, C., Grelinger, M.A., Wong, K.F.: Dust inhalation exposures from the handling of small volumes of powders. Am. Ind. Hyg. Assoc. J. 50(3), 131 (1989)Google Scholar
  28. 28.
    Class, P., deghilage, P., Brown, R.: Dustiness of different high-temperature insulation wools and refractory ceramic fibres. Ann. Occup. Hyg. 45(5), 381 (2001)Google Scholar
  29. 29.
    Petavratzi, E., Kingman, S., Lowndes, I.: Particulates from mining operations: a review of sources, effects and regulations. Miner. Eng. 18(12), 1183 (2005)Google Scholar
  30. 30.
    Tsai, C.J., Huang, C.Y., Chen, S.C., Ho, C.E., Huang, C.H., Chen, C.W., Chang, C.P., Tsai, S.J., Ellenbecker, M.J.: Exposure assessment of nano-sized and respirable particles at different workplaces. J. Nanopart. Res. 13(9), 4161 (2011). CrossRefADSGoogle Scholar
  31. 31.
    Dubey, P., Ghia, U., Turkevich, L.A.: Computational fluid dynamics analysis of the venturi dustiness tester. Powder Technol. 312, 310 (2017). CrossRefGoogle Scholar
  32. 32.
    Pujara, C., Kildsig, D.: Effect of individual particle characteristics on airborne emissions. Drugs Pharm. Sci. 108, 29 (2001)Google Scholar
  33. 33.
    Blome, H.: Umgang mit partikelförmigen schadstoffen. Sich. Arb. 1, 19 (2001)Google Scholar
  34. 34.
    Barig, A., Blome, H.: Allgemeiner Staubgrenzwert. Gefahrst. Reinhalt. Luft 62(1), 2 (2002)Google Scholar
  35. 35.
    Plinke, M.A., Leith, D., Boundy, M.G., Löffler, F.: Dust generation from handling powders in industry. Am. Ind. Hyg. Assoc. J. 56(3), 251 (1995). CrossRefGoogle Scholar
  36. 36.
    Plinke, M., Leith, D., Hathaway, R., Loeffler, F.: Cohesion in granular materials. Bulk Solids Handl. 14(1), 101 (1994)Google Scholar
  37. 37.
    Petavratzi, E., Kingman, S., Lowndes, I.: Assessment of the dustiness and the dust liberation mechanisms of limestone quarry operations. Chem. Eng. Process.: Process Intensif. 46(12), 1412 (2007). CrossRefGoogle Scholar
  38. 38.
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  39. 39.
    Holmes, N., Morawska, L.: A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmos. Environ. 40(30), 5902 (2006). CrossRefADSGoogle Scholar
  40. 40.
    Blöschl, G., Sivapalan, M.: Scale issues in hydrological modelling: a review. Hydrol. Process. 9(3–4), 251 (1995)ADSGoogle Scholar
  41. 41.
    Gill, T.E., Zobeck, T.M., Stout, J.E.: Technologies for laboratory generation of dust from geological materials. J. Hazard. Mater. 132(1), 1 (2006). CrossRefGoogle Scholar
  42. 42.
    Reznik, G., Klenk, U., Schmidt, E.: Untersuchungen zur Staubungsneigung von Braunkohle unterschiedlicher Feuchte. Chem. Ing. Tech. 78(12), 1885 (2006). CrossRefGoogle Scholar
  43. 43.
    Nichols, G., Byard, S., Bloxham, M.J., Botterill, J., Dawson, N.J., Dennis, A., Diart, V., North, N.C., Sherwood, J.D.: A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J. Pharm. Sci. 91(10), 2103 (2002). CrossRefGoogle Scholar
  44. 44.
    Bihan, O.L.C.L., Ustache, A., Bernard, D., Aguerre-Chariol, O., Morgeneyer, M.: Experimental study of the aerosolization from a carbon nanotube bulk by a vortex shaker. J. Nanomater. 2014, 1 (2014). CrossRefGoogle Scholar
  45. 45.
    Boundy, M., Leith, D., Polton, T.: Method to evaluate the dustiness of pharmaceutical powders. Ann. Occup. Hyg. 50(5), 453 (2006)Google Scholar
  46. 46.
    Saleh, K., Jaoude, M.T.M.A., Morgeneyer, M., Lefrancois, E., Bihan, O.L., Bouillard, J.: Dust generation from powders: a characterization test based on stirred fluidization. Powder Technol. 255, 141 (2014). CrossRefGoogle Scholar
  47. 47.
    C. EN 15051. European committee for standardization, Brussels (2006)Google Scholar
  48. 48.
    Morgeneyer, M., Le Bihan, O., Ustache, A., Aguerre-Chariol, O.: Experimental study of the aerosolization of fine alumina particles from bulk by a vortex shaker. Powder Technol. 246, 583 (2013)Google Scholar
  49. 49.
    Pensis, I., Mareels, J., Dahmann, D., Mark, D.: Comparative evaluation of the dustiness of industrial minerals according to European standard EN 15051. Ann. Occup. Hyg. 54(2), 204–216 (2009)Google Scholar
  50. 50.
    Stauber, D., Beutel, R.: Determination and control of the dusting potential of feed premixes. Fresenius’ Z. Anal. Chem. 318(7), 522 (1984). CrossRefGoogle Scholar
  51. 51.
    Hjemsted, K., Schneider, T.: Documentation of a dustiness drum test. Ann. Occup. Hyg. 40(6), 627 (1996)Google Scholar
  52. 52.
    Maynard, A.D., Baron, P.A., Foley, M., Shvedova, A.A., Kisin, E.R., Castranova, V.: Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health, Part A 67(1), 87 (2004). CrossRefGoogle Scholar
  53. 53.
    Ogura, I., Sakurai, H., Gamo, M.: Dustiness testing of engineered nanomaterials. J. Phys.: Conf. Ser. 170(1), 012003 (2009)Google Scholar
  54. 54.
    Plinke, M.A., Maus, R., Leith, D.: Experimental examination of factors that affect dust generation by using Heubach and MRI testers. Am. Ind. Hyg. Assoc. J. 53(5), 325 (1992)Google Scholar
  55. 55.
    Duan, M., Wang, Y., Ren, X., Qu, X., Cao, Y., Yang, Y., Nian, L.: Correlation analysis of three influencing factors and the dust production rate for a free-falling particle stream. Particuology 34, 126 (2017). CrossRefGoogle Scholar
  56. 56.
    Wang, Y., Ren, X., Zhao, J., Chu, Z., Cao, Y., Yang, Y., Duan, M., Fan, H., Qu, X.: Experimental study of flow regimes and dust emission in a free falling particle stream. Powder Technol. 292, 14 (2016). CrossRefADSGoogle Scholar
  57. 57.
    Schofield, C., Sutton, H., Waters, K.: The generation of dust by materials handling operations. J. Powder Bulk Solids Technol. 3(3), 40–44 (1979)Google Scholar
  58. 58.
    Ding, Y., Stahlmecke, B., Kaminski, H., Jiang, Y., Kuhlbusch, T.A., Riediker, M.: Deagglomeration testing of airborne nanoparticle agglomerates: stability analysis under varied aerodynamic shear and relative humidity conditions. Aerosol Sci. Technol. 50(11), 1253 (2016)ADSGoogle Scholar
  59. 59.
    Visser, G.: A wind-tunnel study of the dust emissions from the continuous dumping of coal. Atmos. Environ. Part A. Gen. Top. 26(8), 1453 (1992). CrossRefADSGoogle Scholar
  60. 60.
    Chow, J.C., Watson, J.G., Houck, J.E., Pritchett, L.C., Rogers, C.F., Frazier, C.A., Egami, R.T., Ball, B.M.: A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions. Atmos. Environ. 28(21), 3463 (1994). CrossRefADSGoogle Scholar
  61. 61.
    Schneider, T., Jensen, K.A.: Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum. Ann. Occup. Hyg. 52(1), 23 (2007)Google Scholar
  62. 62.
    Stahlmecke, B., Wagener, S., Asbach, C., Kaminski, H., Fissan, H., Kuhlbusch, T.A.J.: Investigation of airborne nanopowder agglomerate stability in an orifice under various differential pressure conditions. J. Nanopart. Res. 11(7), 1625 (2009). CrossRefADSGoogle Scholar
  63. 63.
    Chung, K., Burdett, G.: Dustiness testing and moving towards a biologically relevant dustiness index. Ann. Occup. Hyg. 38(6), 945 (1994)Google Scholar
  64. 64.
    Breum, N.: The rotating drum dustiness tester: variability in dustiness in relation to sample mass, testing time, and surface adhesion. Ann. Occup. Hyg. 43(8), 557 (1999)Google Scholar
  65. 65.
    Ansart, R., De Ryck, A., Dodds, J.A., Roudet, M., Fabre, D., Charru, F.: Dust emission by powder handling: comparison between numerical analysis and experimental results. Powder Technol. 190(1–2), 274 (2009)Google Scholar
  66. 66.
    Bach, S., Schmidt, E.: Determining the dustiness of powders-a comparison of three measuring devices. Ann. Occup. Hyg. 52(8), 717 (2008)Google Scholar
  67. 67.
    Chakravarty, S., Le Bihan, O., Fischer, M., Morgeneyer, M.: In: EPJ Web of Conferences, vol. 140, p. 13018. EDP Sciences (2017)Google Scholar
  68. 68.
    Han, J., Zhu, Z., Qian, H., Wohl, A.R., Beaman, C.J., Hoye, T.R., Macosko, C.W.: A simple confined impingement jets mixer for flash nanoprecipitation. J. Pharm. Sci. 101(10), 4018 (2012)Google Scholar
  69. 69.
    Jensen, K., Kembouche, Y., Christiansen, E., Jacobsen, N., Wallin, H., Guiot, C., Spalla, O., Witschger, O.: NANOGENOTOX Joint Action (2011)Google Scholar
  70. 70.
    Ogura, I., Kotake, M., Sakurai, H., Gamo, M.: Emission and exposure assessment of manufactured nanomaterials. english version (26 october 2012). nedo project (p06041)“research and development of nanoparticle characterization methods.” (2012)Google Scholar
  71. 71.
    Chen, X., Wheeler, C., Donohue, T., McLean, R., Roberts, A.: Evaluation of dust emissions from conveyor transfer chutes using experimental and CFD simulation. Int. J. Min. Process. 110, 101 (2012)Google Scholar
  72. 72.
    Heitbrink, W.A., Baron, P.A., Willeke, K.: An investigation of dust generation by free falling powders. Am. Ind. Hyg. Assoc. J. 53(10), 617 (1992)Google Scholar
  73. 73.
    Klinzing, G.E., Rizk, F., Marcus, R., Leung, L.: Pneumatic Conveying of Solids: A Theoretical and Practical Approach. Springer, Berlin (2011)Google Scholar
  74. 74.
    Stein, M., Seville, J., Parker, D.: Attrition of porous glass particles in a fluidised bed. Powder Technol. 100(2–3), 242 (1998)Google Scholar
  75. 75.
    Bemrose, C., Bridgwater, J.: A review of attrition and attrition test methods. Powder Technol. 49(2), 97 (1987)Google Scholar
  76. 76.
    Bailey, A.: Electrostatic phenomena during powder handling. Powder Technol. 37(1), 71 (1984)Google Scholar
  77. 77.
    Israelachvili, J.N.: Intermolecular and Surface Forces. Academic press, New York (2011)Google Scholar
  78. 78.
    Seville, J., Willett, C., Knight, P.: Interparticle forces in fluidisation: a review. Powder Technol. 113(3), 261 (2000)Google Scholar
  79. 79.
    Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54(4), 263 (2005)ADSGoogle Scholar
  80. 80.
    Pietsch, W.B.: Agglomeration Processes: Phenomena, Technologies, Equipment. Wiley, New York (2008)Google Scholar
  81. 81.
    Calin, L., Caliap, L., Neamtu, V., Morar, R., Iuga, A., Samuila, A., Dascalescu, L.: Tribocharging of granular plastic mixtures in view of electrostatic separation. IEEE Trans. Ind. Appl. 44(4), 1045 (2008)Google Scholar
  82. 82.
    Krupp, H.: Particles adhesion theory and experiment. Adv. Colloid Interface Sci. 1, 111 (1967)Google Scholar
  83. 83.
    Butt, H.J., Kappl, M.: Normal capillary forces. Adv. Colloid Interface Sci. 146(1–2), 48 (2009)Google Scholar
  84. 84.
    Seville, J., Tüzün, U., Clift, R.: Processing of particulate solids, vol. 9. Springer, Berlin (2012)Google Scholar
  85. 85.
    Schmidt, E.: Fractional release rate—a novel concept to quantify the dustiness of powders. Chem. Ing. Tech. 87(5), 638 (2015)Google Scholar
  86. 86.
    Davies, K., Hammond, C., Higman, R., Wells, A.: Progress in dustiness estimation: British occupational hygiene society technology committee working party on dustiness estimation. Ann. Occup. Hyg. 32(4), 535 (1988)Google Scholar
  87. 87.
    Lyons, C., Mark, D.: Development and Testing of a Procedure to Evaluate the Dustiness of Powders and Dusts in Industrial Use. HSE Books, Norwich (1994)Google Scholar
  88. 88.
    Pujara, C.P.: Determination of factors that affect the generation of airborne particles from bulk pharmaceutical powders. Thesis UMI number 9808505, Purdue University Graduate School (1997)Google Scholar
  89. 89.
    Schofield, C.: Dust generation and control in materials handling. Bulk Solids Handl. 1(3), 419 (1981)Google Scholar
  90. 90.
    Sethi, S., Schneider, T.: A gas fluidization dustiness tester. J. Aerosol Sci. 27, S305 (1996)ADSGoogle Scholar
  91. 91.
    Janhunen, H., Nylander, L., Heikkila, P., Raunemaa, T.: Improved dustiness testing using a three stage im-pactor. In: 3rd Finish Aerosol symposium, pp. 1–6. Finland, Sipoo (1988)Google Scholar
  92. 92.
    Goodfellow, H., Smith, J.: In: Proceedings of Second International Symposium Ventilation for Contaminant Control, pp. 175–182 (1989)Google Scholar
  93. 93.
    Farrugia, T., Ahmed, N., Jameson, G.: A new technique for measuring dustiness of coal. J. Coal Qual. 8(2), 51 (1989)Google Scholar
  94. 94.
    Westborg, S., Cortsen, C.: Determination of dustiness of coal by the rotating drum method. J. Coal Qual. 9(3), 77 (1990)Google Scholar
  95. 95.
    Bröckel, U., Wahl, M., Kirsch, R., Feise, H.J.: Formation and growth of crystal bridges in bulk solids. Chem. Eng. Technol.: Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 29(6), 691 (2006)Google Scholar
  96. 96.
    Jensen, K.A., Koponen, I.K., Clausen, P.A., Schneider, T.: Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk? J. Nanopart. Res. 11(1), 133 (2009)ADSGoogle Scholar
  97. 97.
    Fu, X., Huck, D., Makein, L., Armstrong, B., Willen, U., Freeman, T.: Effect of particle shape and size on flow properties of lactose powders. Particuology 10(2), 203 (2012)Google Scholar
  98. 98.
    Leith, D.: Drag on nonspherical objects. Aerosol Sci. Technol. 6(2), 153 (1987)ADSGoogle Scholar
  99. 99.
    Authier-Martin, M.: Essential Readings in Light Metals, pp. 774–782. Springer, Berlin (2016)Google Scholar
  100. 100.
    Hjemsted, K., Schneider, T.: Dustiness from powder materials. J. Aerosol Sci. 27, S485 (1996)ADSGoogle Scholar
  101. 101.
    Olsen, D., Behrens, C., Hamberg, K., Prytz, A., Tveten, E.: In: Proceedings of the 6th International Alumina Quality Workshop 2002, pp. 1–9Google Scholar
  102. 102.
    Chakravarty, S., Fischer, M., García-Triñanes, P., Dalle, M., Meunier, L., Aguerre-Chariol, O., Le Bihan, O., Morgeneyer, M.: Long-term dust generation from silicon carbide powders. Process Saf. Environ. Prot. 116, 115 (2018)Google Scholar
  103. 103.
    Prescott, J.K., Barnum, R.A.: On powder flowability. Pharm. Technol. 24(10), 60 (2000)Google Scholar
  104. 104.
    Ganesan, V., Rosentrater, K.A., Muthukumarappan, K.: Flowability and handling characteristics of bulk solids and powders—a review with implications for DDGS. Biosyst. Eng. 101(4), 425 (2008)Google Scholar
  105. 105.
    Iqbal, T., Fitzpatrick, J.: Effect of storage conditions on the wall friction characteristics of three food powders. J. Food Eng. 72(3), 273 (2006)Google Scholar
  106. 106.
    Teunou, E., Fitzpatrick, J., Synnott, E.: Characterisation of food powder flowability. J. Food Eng. 39(1), 31 (1999)Google Scholar
  107. 107.
    Teunou, E., Vasseur, J., Krawczyk, M.: Measurement and interpretation of bulk solids angle of repose for industrial process design. Powder Handl. Process. 7(3), 219 (1995)Google Scholar
  108. 108.
    Carr, R.L.: Evaluating flow properties of solids. Chem. Eng. 18, 163 (1965)Google Scholar
  109. 109.
    Hsieh, H.: Measurement of flowability and dustiness of alumina. Light Met. 1987, 139–149 (1987)Google Scholar
  110. 110.
    Clayton, J.: Reviewing current practice in powder testing. Org. Process Res. Dev. 19(1), 102 (2014)Google Scholar
  111. 111.
    Visser, J.: Van der Waals and other cohesive forces affecting powder fluidization. Powder Technol. 58(1), 1 (1989)Google Scholar
  112. 112.
    Shi, H., Mohanty, R., Chakravarty, S., Cabiscol, R., Morgeneyer, M., Zetzener, H., Ooi, J., Kwade, A., Luding, S.: Effect of particle size and cohesion on powder yielding and flow. KONA Powder Part. J. 35, 226–250 (2018)Google Scholar
  113. 113.
    Heitbrink, W.A.: Factors affecting the Heubach and MRI dustiness tests. Am. Ind. Hyg. Assoc. J. 51(4), 210 (1990)Google Scholar
  114. 114.
    Forsythe, W., Hertwig, W.: Attrition characteristics of fluid cracking catalysts. Ind. Eng. Chem. 41(6), 1200 (1949)Google Scholar
  115. 115.
    Olsen, D.: In: Fifth International Alumina Quality Workshop, pp. 1–11. WA, Australia, Bunbury (1999)Google Scholar
  116. 116.
    Nabeel, M., Karasev, A., Jönsson, P.G.: Evaluation of dust generation during mechanical wear of iron ore pellets. ISIJ Intl. 56(6), 960–966 (2016)Google Scholar
  117. 117.
    Chakravarty, S., Fischer, M., García-Triñanes, P., Parker, D., Le Bihan, O., Morgeneyer, M.: Study of the particle motion induced by a vortex shaker. Powder Technol. 322, 54–64 (2017)Google Scholar
  118. 118.
    Hutchings, I.: Mechanisms of wear in powder technology: a review. Powder Technol. 76(1), 3 (1993)Google Scholar
  119. 119.
    Boerefijn, R., Gudde, N., Ghadiri, M.: A review of attrition of fluid cracking catalyst particles. Adv. Powder Technol. 11(2), 145 (2000)Google Scholar
  120. 120.
    Lanning, J.S., Boundy, M.G., Leith, D.: Validating a model for the prediction of dust generation. Part. Sci. Technol. 13(2), 105 (1995)Google Scholar
  121. 121.
    Bansal, R.: A Textbook of Fluid Mechanics. Firewall Media, New Delhi (2005)Google Scholar
  122. 122.
    Jiang, X., Lai, C.H.: Numerical Techniques for Direct and Large—Eddy Simulations. CRC Press, Boca Raton (2009)zbMATHGoogle Scholar
  123. 123.
    Tabatabaian, M.: CFD Module: Turbulent Flow Modeling. Mercury Learning & Information, Herndon (2015)Google Scholar
  124. 124.
    Van Wachem, B., Schouten, J., Krishna, R., Van den Bleek, C.: Validation of the Eulerian simulated dynamic behaviour of gas–solid fluidised beds. Chem. Eng. Sci. 54(13–14), 2141 (1999)Google Scholar
  125. 125.
    Prasad, S., Gautam, A.: Role of momentum exchange coefficient in circulating fluidized-bed. Indian J. Chem. Technol. 14, 258–262 (2007)Google Scholar
  126. 126.
    Santos, D., Petri, I., Duarte, C., Barrozo, M.: Experimental and CFD study of the hydrodynamic behavior in a rotating drum. Powder Technol. 250, 52 (2013)Google Scholar
  127. 127.
    Hwang, G., Shen, H.: Modeling the solid phase stress in a fluid-solid mixture. Int. J. Multiph. Flow 15(2), 257 (1989)Google Scholar
  128. 128.
    Lun, C., Savage, S.B., Jeffrey, D., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223 (1984)zbMATHADSGoogle Scholar
  129. 129.
    Karunarathne, S.S., Jayarathna, C.K., Tokheim, L.A.: Mixing and segregation in a rotating cylinder: CFD simulation and experimental study. Int. J. Model. Optim. 7(1), 1 (2017)Google Scholar
  130. 130.
    Zydak, P., Klemens, R.: Modelling of dust lifting process behind propagating shock wave. J. Loss Prev. Process Ind. 20(4–6), 417 (2007)Google Scholar
  131. 131.
    Cammarata, L., Lettieri, P., Micale, G.D., Colman, D.: 2D and 3D CFD simulations of bubbling fluidized beds using Eulerian-Eulerian models. Int. J. Chem. React. Eng. 1, 1–14 (2003)Google Scholar
  132. 132.
    Li, Z., Kind, M., Gruenewald, G.: Modeling fluid dynamics and growth kinetics in fluidized bed spray granulation. J. Comput. Multiph. Flows 2(4), 235 (2010)Google Scholar
  133. 133.
    Esmaili, A., Donohue, T., Wheeler, W., McBride, C., Roberts, A.: In: 11th International Conference on Bulk Materials Storage. Handling and Transportation. ICBMH, Newcastle (2013)Google Scholar
  134. 134.
    Esmaili, A., Donohue, T., Wheeler, C., McBride, W., Roberts, A.: On the analysis of a coarse particle free falling material stream. Int. J. Miner. Process. 142, 82 (2015)Google Scholar
  135. 135.
    García, M., Sommerer, Y., Schönfeld, T., Poinsot, T.: In: ECCOMAS Thematic Conference on Computational Combustion, vol. 30. Citeseer (2005)Google Scholar
  136. 136.
    Capecelatro, J., Desjardins, O.: An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 1 (2013)MathSciNetzbMATHADSGoogle Scholar
  137. 137.
    Chiesa, M., Mathiesen, V., Melheim, J.A., Halvorsen, B.: Numerical simulation of particulate flow by the Eulerian–Lagrangian and the Eulerian–Eulerian approach with application to a fluidized bed. Comput. Chem. Eng. 29(2), 291 (2005)Google Scholar
  138. 138.
    Kosinski, P., Hoffmann, A.C., Klemens, R.: Dust lifting behind shock waves: comparison of two modelling techniques. Chem. Eng. Sci. 60(19), 5219 (2005)Google Scholar
  139. 139.
    Kosinski, P., Hoffmann, A.C.: An Eulerian–Lagrangian model for dense particle clouds. Comput. Fluids 36(4), 714 (2007)zbMATHGoogle Scholar
  140. 140.
    Murillo, C., Dufaud, O., Bardin-Monnier, N., López, O., Munoz, F., Perrin, L.: Dust explosions: CFD modeling as a tool to characterize the relevant parameters of the dust dispersion. Chem. Eng. Sci. 104, 103 (2013)Google Scholar
  141. 141.
    Zhou, Y., Zhang, Z., Yuan, G.: Powder abrasion material in simulated space state. Mater. Sci. Eng. Powder Metall. 10(5), 50–54 (2005)Google Scholar
  142. 142.
    Salman, A., Hounslow, M., Verba, A.: Particle fragmentation in dilute phase pneumatic conveying. Powder Technol. 126(2), 109 (2002)Google Scholar
  143. 143.
    Rhodes, M., Wang, X., Nguyen, M., Stewart, P., Liffman, K.: Use of discrete element method simulation in studying fluidization characteristics: influence of interparticle force. Chem. Eng. Sci. 56(1), 69 (2001)Google Scholar
  144. 144.
    Cleary, P.W.: Industrial particle flow modelling using discrete element method. Eng. Comput. 26(6), 698 (2009)Google Scholar
  145. 145.
    Kwapinska, M., Saage, G., Tsotsas, E.: Mixing of particles in rotary drums: a comparison of discrete element simulations with experimental results and penetration models for thermal processes. Powder Technol. 161(1), 69 (2006)Google Scholar
  146. 146.
    Alchikh-Sulaiman, B., Alian, M., Ein-Mozaffari, F., Lohi, A., Upreti, S.R.: Using the discrete element method to assess the mixing of polydisperse solid particles in a rotary drum. Particuology 25, 133 (2016)Google Scholar
  147. 147.
    Mishra, B., Thornton, C., Bhimji, D.: A preliminary numerical investigation of agglomeration in a rotary drum. Miner. Eng. 15(1–2), 27 (2002)Google Scholar
  148. 148.
    Yang, M., Li, S., Yao, Q.: Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete-element methods. Powder Technol. 248, 44 (2013)Google Scholar
  149. 149.
    Hiller, R., Löffler, F.: Influence of particle impact and adhesion on the collection efficiency of fibre filters. German Chem. Eng. 3, 327 (1980)Google Scholar
  150. 150.
    Lucci, F., Ferrante, A., Elghobashi, S.: Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size? Phys. Fluids 23(2), 025101 (2011)ADSGoogle Scholar
  151. 151.
    Antonyuk, S., Khanal, M., Tomas, J., Heinrich, S., Mörl, L.: Impact breakage of spherical granules: experimental study and DEM simulation. Chem. Eng. Process.: Process Intens. 45(10), 838 (2006)Google Scholar
  152. 152.
    Tong, Z., Yang, R., Yu, A., Adi, S., Chan, H.: Numerical modelling of the breakage of loose agglomerates of fine particles. Powder Technol. 196(2), 213 (2009)Google Scholar
  153. 153.
    Thornton, C., Yin, K., Adams, M.: Numerical simulation of the impact fracture and fragmentation of agglomerates. J. Phys. D: Appl. Phys. 29(2), 424 (1996)ADSGoogle Scholar
  154. 154.
    Moreno, R., Ghadiri, M., Antony, S.: Effect of the impact angle on the breakage of agglomerates: a numerical study using DEM. Powder Technol. 130(1–3), 132 (2003)Google Scholar
  155. 155.
    Liu, L., Kafui, K., Thornton, C.: Impact breakage of spherical, cuboidal and cylindrical agglomerates. Powder Technol. 199(2), 189 (2010)Google Scholar
  156. 156.
    Golchert, D., Moreno, R., Ghadiri, M., Litster, J.: Effect of granule morphology on breakage behaviour during compression. Powder Technol. 143, 84 (2004)Google Scholar
  157. 157.
    Chew, N.Y., Chan, H.K.: Influence of particle size, air flow, and inhaler device on the dispersion of mannitol powders as aerosols. Pharm. Res. 16(7), 1098 (1999)Google Scholar
  158. 158.
    Kawaguchi, T., Tanaka, T., Tsuji, Y.: Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two-and three-dimensional models). Powder Technol. 96(2), 129 (1998)Google Scholar
  159. 159.
    Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Int. J. 12(2–3), 140 (2012)MathSciNetGoogle Scholar
  160. 160.
    Chu, K., Wang, B., Xu, D., Chen, Y., Yu, A.: CFD-DEM simulation of the gas-solid flow in a cyclone separator. Chem. Eng. Sci. 66(5), 834 (2011)Google Scholar
  161. 161.
    Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: DEM/CFD–DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108 (2016)Google Scholar
  162. 162.
    Derakhshani, S.M., Schott, D.L., Lodewijks, G.: In: 11th International Conference on Bulk Materials Storage, Handling and Transportation, ICBMH 2013 (2013)Google Scholar
  163. 163.
    LaMarche, C.Q., Liu, P., Kellogg, K.M., Weimer, A.W., Hrenya, C.M.: A system-size independent validation of CFD–DEM for noncohesive particles. AIChE J. 61(12), 4051 (2015)Google Scholar
  164. 164.
    Bagherzadeh, M.: Modelling single particle settlement by CFD-DEM coupling method. Thesis. Department of Transport and Planning, TU Delft University (2014)Google Scholar
  165. 165.
    Tong, Z., Zheng, B., Yang, R., Yu, A., Chan, H.: CFD–DEM investigation of the dispersion mechanisms in commercial dry powder inhalers. Powder Technol. 240, 19 (2013)Google Scholar
  166. 166.
    Hilton, J., Cleary, P.: Dust modelling using a combined CFD and discrete element formulation. Int. J. Numer. Methods Fluids 72(5), 528 (2013)MathSciNetADSGoogle Scholar
  167. 167.
    Brosh, T., Kalman, H., Levy, A.: Accelerating CFD–DEM simulation of processes with wide particle size distributions. Particuology 12, 113 (2014)Google Scholar
  168. 168.
    Yang, Y., Cheng, Y.: A fractal model of contact force distribution and the unified coordination distribution for crushable granular materials under confined compression. Powder Technol. 279, 1 (2015)MathSciNetADSGoogle Scholar
  169. 169.
    Shigeto, Y., Sakai, M.: Parallel computing of discrete element method on multi-core processors. Particuology 9(4), 398 (2011)Google Scholar
  170. 170.
    Pinar, Z., Dutta, A., Bény, G., Öziş, T.: Analytical solution of population balance equation involving aggregation and breakage in terms of auxiliary equation method. Pramana 84(1), 9 (2014). CrossRefADSGoogle Scholar
  171. 171.
    Vanni, M.: Approximate population balance equations for aggregation-breakage processes. J. Colloid Interface Sci. 221(2), 143 (2000). CrossRefADSGoogle Scholar
  172. 172.
    Diemer, R.B., Olson, J.H.: A moment methodology for coagulation and breakage problems: Part 1-analytical solution of the steady-state population balance. Chem. Eng. Sci. 57(12), 2193 (2002). CrossRefGoogle Scholar
  173. 173.
    Ding, A., Hounslow, M., Biggs, C.: Population balance modelling of activated sludge flocculation: investigating the size dependence of aggregation, breakage and collision efficiency. Chem. Eng. Sci. 61(1), 63 (2006). CrossRefGoogle Scholar
  174. 174.
    Kumar, J., Peglow, M., Warnecke, G., Heinrich, S.: An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technol. 182(1), 81 (2008). CrossRefGoogle Scholar
  175. 175.
    Patruno, L., Dorao, C., Svendsen, H., Jakobsen, H.: Analysis of breakage kernels for population balance modelling. Chem. Eng. Sci. 64(3), 501 (2009). CrossRefGoogle Scholar
  176. 176.
    Nuyttens, D., Devarrewaere, W., Verboven, P., Foqué, D.: Pesticide-laden dust emission and drift from treated seeds during seed drilling: a review. Pest Manag. Sci. 69(5), 564 (2013)Google Scholar
  177. 177.
    Owoyemi, O., Lettieri, P., Place, R.: Experimental validation of eulerian- eulerian simulations of rutile industrial powders. Ind. Eng. Chem. Res. 44(26), 9996 (2005)Google Scholar
  178. 178.
    Patankar, N., Joseph, D.: Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach. Int. J. Multiph. Flow 27(10), 1659 (2001)zbMATHGoogle Scholar
  179. 179.
    Di Renzo, A., Di Maio, F.P.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59(3), 525 (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Transformations Intégrées de la Matière Renouvelable (TIMR)Université de Technologie de Compiègne (UTC) – Sorbonne UniversitésCompiègne CedexFrance
  2. 2.Centre SPINEcole Nationale Superieure des Mines de Saint EtienneSaint-Étienne Cedex 2France
  3. 3.Departement PTSIEcole Nationale Superieure des Mines de Saint EtienneSaint-Étienne Cedex 2France
  4. 4.LPMG -UMR CNRS 5148Ecole Nationale Superieure des Mines de Saint EtienneSaint-Étienne Cedex 2France
  5. 5.Institut National de l’ EnviRonnement Industriel et des RisqueS (INERIS), NOVA/CARA/DRC/INERISVerneuil-en-HalatteFrance

Personalised recommendations