Dynamic boundary setting for discrete element method considering the seismic problems of rock masses

  • 122 Accesses


The discrete element method (DEM) provides an effective approach to analyse the large deformations and discontinuous problems in geotechnical engineering. In this paper, to improve the capability of DEM for seismic response analysis of rock masses, the problem of boundary setting in DEM is systematically investigated. Three typical dynamic boundary conditions are reviewed and introduced into DEM. Calibration factors are introduced into the equations of the boundary conditions, and an approach is proposed to determine the factors for optimum wave absorption. The procedures for constructing the free-field domain and main-grid domain are proposed. The seismic dynamic input methods are researched, and a static-dynamic unified boundary technique is proposed to enable the consistent boundary transformation. Numerical examples are presented to verify the feasibility and effectiveness of the proposed boundary-setting methods.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24


  1. 1.

    Aziznejad, S., Esmaieli, K., Hadjigeorgiou, J., Labrie, D.: Response of jointed rock masses subjected to impact loading. J. Rock Mech. Geotech. Eng. 10(4), 624–634 (2018)

  2. 2.

    Bahaaddini, M., Sharrock, G., Hebblewhite, B.K.: Numerical direct shear tests to model the shear behaviour of rock joints. Comput. Geotech. 51, 101–115 (2013)

  3. 3.

    Bahaaddini, M., Hagan, P.C., Mitra, R., Khosravi, M.H.: Experimental and numerical study of asperity degradation in the direct shear test. Eng. Geol. 204, 41–52 (2016)

  4. 4.

    Cai, M., Kaiser, P.K., Morioka, H., Minami, M., Maejima, T., Tasaka, Y., Kurose, H.: FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations. Int. J. Rock Mech. Min. Sci. 44, 550–564 (2007)

  5. 5.

    Cao, W.Z., Li, X.B., Tao, M., Zhou, Z.L.: Vibrations induced by high initial stress release during underground excavations. Tunn. Undergr. Space Technol. 53, 78–95 (2016)

  6. 6.

    Cundall, P.A.: A computer model for simulating progressive, large-scale movements in blocky rock systems. In: Proceedings of the International Symposium on Rock Mechanics, vol. 1, pp. 129–136. Nancy, France (1971)

  7. 7.

    Cundall, P.A.: Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of manypolyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)

  8. 8.

    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geothechnique 29(1), 47–65 (1979)

  9. 9.

    Deng, Q.H., Gong, L.X., Zhang, L.P., Yuan, R.M., Xue, Y.Q., Geng, X.G., Hu, S.X.: Simulating dynamic processes and hypermobility mechanisms of the Wenjiagou rock avalanche triggered by the 2008 Wenchuan earthquake using discrete element modelling. Bull. Eng. Geol. Environ. 76, 923–936 (2017)

  10. 10.

    Deeks, A.J., Randolph, M.F.: Axisymmetric time-domain transmitting boundaries. J. Eng. Mech. 120(1), 25–42 (1994)

  11. 11.

    Elmekati, A., Shamy, U.E.: A practical co-simulation approach for multiscale analysis of geotechnical systems. Comput. Geotech. 37(4), 494–503 (2010)

  12. 12.

    Fakhimi, A., Carvalho, F., Ishida, T., Labuz, J.F.: Simulation of failure around a circular opening in rock. Int. J. Rock Mech. Min. Sci. 39(4), 507–515 (2002)

  13. 13.

    Francioni, M., Salvini, R., Stead, D., Litrico, S.: A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy. Eng. Geol. 183, 290–302 (2014)

  14. 14.

    Fu, X.D., Sheng, Q., Zhang, Y.H., Zhou, Y.Q., Dai, F.: Boundary setting method for the seismic dynamic response analysis of engineering rock mass structures using the discontinuous deformation analysis method. Int. J. Numer. Anal. Methods Geomech. 39(15), 1693–1712 (2015)

  15. 15.

    García, M., Pastén, C., Sepúlveda, S.A., Montalva, G.A.: Dynamic numerical investigation of a stepped-planar rockslide in the Central Andes, Chile. Eng. Geol. 237, 64–75 (2018)

  16. 16.

    Gutiérrez-Ch, J.G., Senent, S., Melentijevic, S., Jimenez, R.: Distinct element method simulations of rock-concrete interfaces under different boundary conditions. Eng. Geol. 240, 123–139 (2018)

  17. 17.

    Hadjigeorgiou, J., Esmaieli, K., Grenon, M.: Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model. Tunn. Undergr. Space Technol. 24(3), 296–308 (2009)

  18. 18.

    He, J.M., Li, X., Li, S.D., Yin, Y.P., Qian, H.T.: Study of seismic response of colluvium accumulation slope by particle flow code. Granul. Matter 12(5), 483–490 (2010)

  19. 19.

    Hou, J., Zhang, M.X., Chen, Q., Wang, D., Javadi, A., Zhang, S.L.: Failure-mode analysis of loose deposit slope in Ya’an-Kangding Expressway under seismic loading using particle flow code. Granul. Matter 21(8), 1–12 (2019)

  20. 20.

    Huang, R.Q., Pei, X.J., Fan, X.M., Zhang, W.F., Li, S.G., Li, B.L.: The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China. Landslides. 9(1), 131–142 (2012)

  21. 21.

    Huang, X., Qi, S.W., Williams, A., Zou, Y., Zheng, B.W.: Numerical simulation of stress wave propagating through filled joints by particle model. Int. J. Solids Struct. 69–70, 23–33 (2015)

  22. 22.

    Itasca Consulting Group Inc.: UDEC (universal distinct element code), version 5.0. ITASCA Consulting Group, Minneapolis, Minnesota, USA (2013)

  23. 23.

    Itasca Consulting Group Inc.: 3DEC (three dimensional distinct element code), version 5.0. ITASCA Consulting Group, Minneapolis, Minnesota, USA (2013)

  24. 24.

    Itasca Consulting Group Inc.: Particle Flow Code in 2 or 3 Dimensions, version 4.0, User’s manual, ITASCA Consulting Group, Minneapolis, Minnesota, USA (2008)

  25. 25.

    Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., Cundall, P.A.: The synthetic rock mass approach for jointed rock mass modelling. Int. J. Rock Mech. Min. Sci. 48(2), 219–244 (2011)

  26. 26.

    Jia, M.C., Yang, Y., Liu, B., Wu, S.H.: PFC/FLAC coupled simulation of dynamic compaction in granular soils. Granul. Matter 20(76), 1–15 (2018)

  27. 27.

    Kveldsvik, V., Kaynia, A.M., Nadim, F., Bhasin, R., Nilsen, B., Einstein, H.H.: Dynamic distinct-element analysis of the 800 m high Åknes rock slope. Int. J. Rock Mech. Min. Sci. 46(4), 686–698 (2009)

  28. 28.

    Li, M.G., Yu, H.T., Wang, J.H., Xia, X.H., Chen, J.J.: A multiscale coupling approach between discrete element method and finite difference method for dynamic analysis. Int. J. Numer. Methods Eng. 102(1), 1–21 (2015)

  29. 29.

    Lu, C.Y., Tang, C.L., Chan, Y.C., Hu, J.C., Chi, C.C.: Forecasting landslide hazard by the 3D discrete element method: a case study of the unstable slope in the Lushan hot spring district, central Taiwan. Eng. Geol. 183, 14–30 (2014)

  30. 30.

    Lysmer, J., Kuhlemeyer, R.L.: Finite dynamic model for infinite media. J. Eng. Mech. ASCE 95(4), 859–877 (1969)

  31. 31.

    Liu, J.B., Lu, Y.D.: A direct method for analysis of dynamic soil-structure interaction based on interface idea. Dev. Geotech. Eng. 83, 261–276 (1998)

  32. 32.

    Lamb, H.: On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. Lond. A 203, 1–42 (1904)

  33. 33.

    Park, D., Jeon, B., Jeon, S.: A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration. Rock Mech. Rock Eng. 42(3), 449–473 (2009)

  34. 34.

    Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

  35. 35.

    Poulsen, B.A., Adhikary, D., Guo, H.: Simulating mining-induced strata permeability changes. Eng. Geol. 237, 208–216 (2018)

  36. 36.

    Rafiee, R., Ataei, M., Khalookakaie, R., Jalali, S.E., Sereshki, F., Noroozi, M.: Numerical modeling of influence parameters in cavabililty of rock mass in block caving mines. Int. J. Rock Mech. Min. Sci. 105, 22–27 (2018)

  37. 37.

    Resende, R., Lamas, L.N., Lemo, J.V., Calcada, R.: Micromechanical modelling of stress waves in rock and rock fractures. Rock Mech. Rock Eng. 43(6), 741–761 (2010)

  38. 38.

    Saiang, D.: Stability analysis of the blast-induced damage zone by continuum and coupled continuum-discontinuum methods. Eng. Geol. 116, 1–11 (2010)

  39. 39.

    Shamy, U.E., Zamani, N.: Discrete element method simulations of the seismic response of shallow foundations including soil-foundation-structure interaction. Int. J. Numer. Anal. Meth. Geomech. 36(10), 1303–1329 (2012)

  40. 40.

    Tang, C.L., Hu, J.C., Lin, M.L., Yuan, R.M., Cheng, C.C.: The mechanism of the 1941 Tsaoling landslide, Taiwan: insight from a 2D discrete element simulation. Environ. Earth Sci. 70(3), 1005–1019 (2013)

  41. 41.

    Tu, F.B., Ling, D.S., Bu, L.F., Yang, Q.D.: Generalized bridging domain method for coupling finite elements with discrete elements. Comput. Methods Appl. Mech. Eng. 276, 509–533 (2014)

  42. 42.

    Wagner, G.J., Liu, W.K.: Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys. 190(1), 249–274 (2003)

  43. 43.

    Wang, C., Tannant, D.D., Lilly, P.A.: Numerical analysis of the stability of heavily jointed rock slopes using PFC2D. Int. J. Rock Mech. Min. Sci. 40(3), 415–424 (2003)

  44. 44.

    Washino, K., Chan, E.L., Tanaka, T.: DEM with attraction forces using reduced particle stiffness. Powder Technol. 325, 202–208 (2017)

  45. 45.

    Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193, 1645–1669 (2004)

  46. 46.

    Yang, S.Q., Huang, Y.H., Jing, H.W., Liu, X.R.: Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng. Geol. 178, 28–48 (2014)

  47. 47.

    Yuan, R.M., Tang, C.L., Hu, J.C., Xu, X.W.: Mechanism of the Donghekou landslide triggered by the 2008 Wenchuan earthquake revealed by discrete element modeling. Nat. Hazards Earth Syst. Sci. 14(5), 1195–1205 (2014)

  48. 48.

    Zhou, J.W., Cui, P., Fang, H.: Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides 10(3), 331–342 (2013)

  49. 49.

    Zhou, J.W., Huang, K.X., Shi, C., Hao, M.H., Guo, C.X.: Discrete element modeling of the mass movement and loose material supplying the gully process of a debris avalanche in the Bayi Gully, Southwest China. J. Asian Earth Sci. 99, 95–111 (2015)

  50. 50.

    Zienkiewicz, O.C., Bicanic, N., Shen, F.Q.: Earthquake input definition and the trasmitting boundary conditions. In: Proceedings of Advances in Computational Nonlinear Mechanics, pp. 109–138. Springer, Berlin (1988)

  51. 51.

    Zimmerman, J.A., Klein, P.A.: Coupled atomistic-continuum simulations using arbitrary overlapping domains. J. Comput. Phys. 213, 86–116 (2006)

Download references


We would like to acknowledge the reviewers and the editors for their comments and suggestions. The study was financially supported by the National Basic Research Program of China (No. 2015CB057905), the National Natural Science Foundation of China, (Nos. 51779253, 41672319), and the National Key R&D Program of China (No. 2016YFC0401803).

Author information

Correspondence to Xingtao Zhou.

Ethics declarations

Conflict of interest

This article is original. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Sheng, Q. & Cui, Z. Dynamic boundary setting for discrete element method considering the seismic problems of rock masses. Granular Matter 21, 66 (2019).

Download citation


  • Discrete element method
  • Boundary setting
  • Calibration factor
  • Seismic dynamic input
  • Seismic response analysis