Granular Matter

, 21:53 | Cite as

An interpretation of the influence of particle shape on the mechanical behavior of granular material

  • Debdeep SarkarEmail author
  • Meisam Goudarzy
  • Diethard König
Original Paper


An earthquake refers to volcanic or magmatic activity or any other sudden stress changes in the earth which can result in instability, liquefaction and ground settlement. Past studies show that liquefaction and instability of granular soils are not the only consequence of earthquakes. Significant advances have been made in the past few decades to understand the effect of various soil characteristics (e.g. size, mineralogy, fines content) and boundary conditions on their role on the instability and liquefaction susceptibility of geomaterials. However, studies on the impact of particle shape on the mechanical characteristics of granular material has been relatively less documented and is therefore, unclear. The current experimental study deals with the above problem, where, three materials having different shapes (crushed glass, Rhein sand and round glass beads) but possessing the same uniformity coefficient and mean grain size were used. The materials were thoroughly washed in a 0.063 mm sieve to eliminate fines. Experiments were conducted using the monotonic triaxial (both drained and undrained) and direct shear devices available at the Ruhr-Universität Bochum. No significant particle breakage was observed throughout the entire test program for the three materials. The results of our experiments showed the significant influence of the grain shape on the mechanical characteristics of sands (e.g. shear strength, peak friction and dilation angle). The analysis of results showed a possible correlation between the mechanical and intrinsic characteristics of granular material and the particle shapes.


Triaxial Direct shear Particle shape Peak friction angle Dilation Steady state friction angle 

List of symbols

φp (°)

Peak friction angle

ψ (°)

Dilation angle

e (−)

Void ratio


Maximum and minimum void ratio respectively

ecs (−)

Steady state void ratio

φcs (°)

Steady state friction angle

ρ (−)


Cu (−)

Uniformity coefficient

D50 (mm)

Mean grain size

\(p^{\prime}\) (kPa)

Effective confining stress

\(p_{0}^{'}\) (kPa)

Initial effective confining stress

\(p_{a}^{'}\) (kPa)

Atmospheric pressure

q (kPa)

Deviatoric stress

qpeak (kPa)

Peak deviatoric stress

ε1 (−)

Axial strain

εv (−)

Volumetric strain

ID (−)

Relative density

IR (−)

Relative density index


Various fitting parameters

M (−)

Slope of the \(q - p^{\prime}\) line


Intercept and slope of the steady state line respectively



The authors would like to thank the laboratory technician, Mr. Skubisch for his help during performing the tests. Also, the first author would like to thank the Deutscher Akademischer Austauschdienst (DAAD) for the financial support to pursue his research.


Funding was provided by German Academic Exchange Service New Delhi (Grant No. Research Grants- Doctoral Programmes in Germany: 57299294).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Altuhafi, F., Coop, M.R., Georgiannou, V.N.: Effect of particle shape on the mechanical behavior of natural sands. J. Geotech. Geoenviron. Eng. 142(12), 04016071 (2016)CrossRefGoogle Scholar
  2. 2.
    Alshibli, K.A., Cil, M.B.: Influence of particle morphology on the friction and dilatancy of sand. J. Geotech. Geoenviron. Eng. 144(3), 04017118 (2018). CrossRefGoogle Scholar
  3. 3.
    Baldi, G., Nova, R.: Membrane penetration effects in triaxial testing. J. Geotech. Eng. (ASCE) 110, 403–420 (1984)CrossRefGoogle Scholar
  4. 4.
    Been, K., Jefferies, M.G.: A state parameter for sands. Geotechnique 35(2), 99–112 (1985)CrossRefGoogle Scholar
  5. 5.
    Been, K., Jefferies, M.G., Hachey, J.: The steady state of sand. Geotechnique 41(3), 365–381 (1991). CrossRefGoogle Scholar
  6. 6.
    Bishop, A.W.: The strength of soils as engineering materials. Geotechnique 16(2), 89–130 (1966)CrossRefGoogle Scholar
  7. 7.
    Bolton, M.D.: The strength and dilatancy of sands. Geotechnique 36(1), 65–78 (1986)Google Scholar
  8. 8.
    Chakraborty, T., Salgado, R.: Dilatancy and shear strength of sand at low confining pressures. J. Geotech. Geoenviron. Eng. 136(3), 527–532 (2010). CrossRefGoogle Scholar
  9. 9.
    Chan, L.C.Y., Page, N.W.: Particle fractal and load effects on internal friction in powders. Powder Technol. 90(3), 259–266 (1997)CrossRefGoogle Scholar
  10. 10.
    Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)CrossRefGoogle Scholar
  11. 11.
    Cornforth, D.H.: Some experiments on the influence of strain conditions on the strength of sand. Geotechnique 14(2), 143–167 (1964)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Doanh, T., Hoang, M.T., Roux, J.-N., Dequeker, C.: Stick-slip behaviour of model granular materials in drained triaxial compression. Granul. Matter 15(1), 1–23 (2013)CrossRefGoogle Scholar
  13. 13.
    DIN18123: Baugrund, Untersuchung von Bodenproben - Bestimmung der Korngrößenverteilung. Germany (2011)Google Scholar
  14. 14.
    DIN18124: Baugrund, Untersuchung von Bodenproben - Bestimmung der Korndichte - Kapillarpyknometer, Weithalspyknometer, Gaspyknometer. Germany (2011)Google Scholar
  15. 15.
    DIN18126: Baugrund, Untersuchung von Bodenproben - Bestimmung der Dichte nichtbindiger Böden bei lockerster und dichtester Lagerung. Germany (1996)Google Scholar
  16. 16.
    Hammad, W. I. (1991) Modelisation non lineare et etude experimentale des bandes de cisaillement dans les sable. DSc thesis, Universite Grenoble AlpesGoogle Scholar
  17. 17.
    Hayman, N.W., Ducloue, L., Foco, K.L., Daniels, K.E.: Granular controls on periodicity of stick-slip events: kinematics and forcechains in an experimental fault. Pure. appl. Geophys. 168(12), 2239–2257 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Ishihara, K.: Liquefaction and flow failure during earthquakes. Geotechnique 43(3), 351–415 (1993)CrossRefGoogle Scholar
  19. 19.
    Islam, M.N., Siddika, A., Hossain, M.B., Rahman, A., Asad, M.A.: Effect of particle size on the shear strength behavior of sands. Aust. Geomech. J. 46(3), 75–85 (2011)Google Scholar
  20. 20.
    Jefferies, M., Been, K.: Soil Liquefaction: A Steady State Approach, 2nd edn. CRC Press, Taylor and Francis Group, LLC, Boca Raton (2016)Google Scholar
  21. 21.
    Jensen, R.P., Edil, T.B., Bosscher, P.J., Plesha, M.E., Kahla, N.B.: Effect of particle shape on interface behavior of DEM-simulated granular materials. Int. J. Geomech. 1(1), 1–19 (2001)CrossRefGoogle Scholar
  22. 22.
    Jerves, A.X., Kawamoto, R.Y., Andrade, J.E.: Effects of grain morphology on steady state: a computational analysis. Acta Geotech. 11, 493–503 (2015). CrossRefGoogle Scholar
  23. 23.
    Jiang, M., Zhang, A., Fu, C.: 3-D DEM simulations of drained triaxial tests on inherently anisotropic granulates. Eur. J. Environ. Civ. Eng. (2017). CrossRefGoogle Scholar
  24. 24.
    Kumara, J., Hayano, K., Ogiwara, K.: Image analysis techniques on evaluation of particle size distribution of gravel. Int. J. GEOMATE 3(1), 290–297 (2012)Google Scholar
  25. 25.
    Lade, P. V. and Ibsen, L. B. (1997), “A study of the phase transformation and the characteristic lines of sand behavior”, Proceedings of the International Symposium on Deformation and Progressive Failure in Geomechanics, Nagoya, Japan, Oct. 1997Google Scholar
  26. 26.
    Li, X.S., Dafalias, Y.F.: Dilatancy for cohesionless soils. Geotechnique 50(4), 449–460 (2000)CrossRefGoogle Scholar
  27. 27.
    Murthy, T.G., Loukidis, D., Carraro, J.A.H., Prezzi, M., Salgado, R.: Undrained monotonic response of clean and silty sands. Geotechnique 57(3), 273–288 (2007)CrossRefGoogle Scholar
  28. 28.
    Ng, T.T.: Fabric evolution of ellipsoidal arrays with different particle shapes. J. Eng. Mech. 127(10), 994–999 (2001)CrossRefGoogle Scholar
  29. 29.
    Ng, T., Zhou, W., Chang, X.: Effect of particle shape and fine content on the behavior of binary mixture. J. Eng. Mech. (2016). CrossRefGoogle Scholar
  30. 30.
    Nguyen, H.B.K., Rahman, M.M., Fourie, A.B.: Characteristic behavior of drained and undrained triaxial compression tests: DEM study. J. Geotech. Geoenviron. Eng. 144(9), 04018060 (2018)CrossRefGoogle Scholar
  31. 31.
    Olson, S.M., Mattson, B.B.: Mode of shear effects on yield and liquefied strength ratios. Can. Geotech. J. 45(4), 574–587 (2008)CrossRefGoogle Scholar
  32. 32.
    Omar, T., Sadrekarimi, A.: Effects of multiple corrections on triaxial compression testing of sands. J. GeoEng. 9(2), 75–83 (2014)Google Scholar
  33. 33.
    Phan, V.T., Hsiao, D., Nguyen, P.T.: Effects of fines contents on engineering properties of sand-fines mixtures. In: Proceedings of Sustainable Development of Civil, Urban and Transportation Engineering Conference, Procedia Engineering, vol. 142, pp. 213–220 (2016)CrossRefGoogle Scholar
  34. 34.
    Rowe, P.W.: The stress–dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. A 269, 500–527 (1962)ADSCrossRefGoogle Scholar
  35. 35.
    Sadrekarimi, A., Olson, S.M.: Steady state friction angle of sands. Geotechnique 61(9), 771–783 (2011). CrossRefGoogle Scholar
  36. 36.
    Santamarina, J.C., Cho, G.C.: Determination of steady state parameters in sandy soils: simple procedure. Geotech. Test. J. 24(2), 185–192 (2001)CrossRefGoogle Scholar
  37. 37.
    Sarkar, D., König, D., Goudarzy, M.: On the influence of particle characteristics on the index void ratios in granular materials. Particuology (2019). CrossRefGoogle Scholar
  38. 38.
    Schanz, T., Vermeer, P.A.: Angles of friction and dilatancy of sand. Geotechnique 46(1), 145–151 (1996)CrossRefGoogle Scholar
  39. 39.
    Schofield, A., Wroth, C.P.: Critical State Soil Mechanics, pp. 1–310. McGraw-Hill, New York (1968)Google Scholar
  40. 40.
    Sladen, J.A., D’Hollander, R.D., Krahn, J.: Back analysis of the Nerlerk berm liquefaction slides. Can. Geotech. J. 22(4), 579–588 (1985)CrossRefGoogle Scholar
  41. 41.
    Strahler, A., Stuedlein, A.W., Arduino, P.: Stress–strain response and dilatancy of sandy gravel in triaxial compression and plane strain. J. Geotech. Geoenviron. Eng. (2015). CrossRefGoogle Scholar
  42. 42.
    Sukumaran, B., Ashmawy, A.K.: Quantitative characterization of the geometry of discrete particles. Geotechnique 51(7), 171–179 (2001)CrossRefGoogle Scholar
  43. 43.
    Tatsuoka, F., Toki, S., Miura, S., Kato, H., Okamoto, M., Yamada, S., Yasuda, S., Tanizawa, F.: Some factors affecting cyclic undrained triaxial strength of sand. Soils Found. 26(3), 99–116 (1986)CrossRefGoogle Scholar
  44. 44.
    Thevanayagam, S.: Effect of fines and confining stress on undrained shear strength of silty sands. J. Geotech. Geoenviron. Eng. 124(6), 479–491 (1998)CrossRefGoogle Scholar
  45. 45.
    Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 43–53 (2000). CrossRefGoogle Scholar
  46. 46.
    Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E (2011). CrossRefGoogle Scholar
  47. 47.
    Tordesillas, A., Hilton, J.E., Tobin, S.T.: Stick-slip and force chain evolution in a granular bed in response to a grain intruder. Phys. Rev. E (2014). CrossRefGoogle Scholar
  48. 48.
    Wang, G., Wei, J.: Microstructure evolution of granular soils in cyclic mobility and post-liquefaction process. Granul. Matter 18, 51 (2016)CrossRefGoogle Scholar
  49. 49.
    Wang, J., Zhang, H., Tang, S., Liang, Y.: Effects of particle size distribution on shear strength of accumulated soil. J. Geotech. Geoenviron. Eng. (2013). CrossRefGoogle Scholar
  50. 50.
    Wei, J., Huang, D., Wang, G.: Micro-scale descriptors for particle-void distribution and jamming transition in pre- and post-liquefaction of granular soils. J. Eng. Mech. 144(8), 04018067 (2018)CrossRefGoogle Scholar
  51. 51.
    Wichtmann, T. (2005) Explicit accumulation model for non-cohesive soils under cyclic loading. Ph.D. Thesis, Ruhr-Universität BochumGoogle Scholar
  52. 52.
    Wu, Y., Yamamoto, H., Izumi, A.: Experimental investigation on crushing of granular material in one-dimensional test. Period. Polytech. Civ. Eng. 60(1), 27–36 (2016). CrossRefGoogle Scholar
  53. 53.
    Yang, J., Dai, B.B.: Is the quasi-steady state a real behavior? A micromechanical perspective. Géotechnique 61(2), 175–183 (2011)CrossRefGoogle Scholar
  54. 54.
    Yang, J., Luo, X.D.: Exploring the relationship between steady state and particle shape for granular materials. J. Mech. Phys. Solids 84, 196–213 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    Zhang, H., Garga, V.K.: Quasi-steady state: a real behavior? Can. Geotech. J. 34, 749–761 (1997)CrossRefGoogle Scholar
  56. 56.
    Zhao, Y., Liu, Z.: Study of material composition effects on the mechanical properties of soil-rock mixtures. Adv. Civ. Eng. (2018). CrossRefGoogle Scholar
  57. 57.
    Zheng, J., Hryciw, R.D.: Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Géotechnique 65(6), 494–506 (2015)CrossRefGoogle Scholar
  58. 58.
    Zheng, J., Hryciw, R.D.: Index void ratios of sands from their intrinsic properties. J. Geotech. Geoenviron. Eng. (2016). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of Soil Mechanics, Foundation Engineering and Environmental GeotechnicsRuhr-Universität BochumBochumGermany

Personalised recommendations