Advertisement

Granular Matter

, 21:48 | Cite as

Micromechanical study of particle breakage in 2D angular rockfill media using combined DEM and XFEM

  • Javad Raisianzadeh
  • Soheil Mohammadi
  • Ali Asghar MirghasemiEmail author
Original Paper
  • 188 Downloads

Abstract

A micromechanical study of particle breakage in 2D angular rockfill materials under biaxial compression loading has been conducted using a combined DEM and XFEM approach. In this approach, modeling of the crack propagation is performed on a fixed mesh without the limitations of classic FEM. Each breakage analysis is based on the final crack propagation state in the previous step; therefore, the progressive strength reduction of the particle is incorporated into the breakage analysis during loading. The micromechanics of the non-breakable and breakable assemblies have been studied under different confining pressures. It was found that particle breakage reduced the voids in the assembly, which resulted in a decrease in the final displacement of the particle assembly. Also, the contact forces, particle stresses and anisotropies decreased as a result of particle breakage and a more uniform distribution of contact forces and stresses was created. It was observed, as the confining pressure increased, the particle breakage increased and its effects intensified. Particle breakage was found to be the main cause of the decrease in anisotropies at higher confining pressures which, consequently, led to a reduction in the friction angle of the assembly.

Keywords

Particle breakage Micromechanics Discrete element method Extended finite element method Macroscopic behavior 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Marsal, R.J.: Large-scale testing of rockfill materials. J. Soil Mech. Found. Div. 93(2), 27–43 (1967)Google Scholar
  2. 2.
    Marachi, N.D., Chan, C.K., Seed, H.B.: Evaluation of properties of rockfill materials. J. Soil Mech. Found. Div. 97(SM1), 95–114 (1971)Google Scholar
  3. 3.
    Charles, J.A., Watts, K.S.: The influence of confining pressure on the shear strength of compacted rockfill. Geotechnique 30(4), 353–367 (1980)CrossRefGoogle Scholar
  4. 4.
    Hardin, B.O.: Crushing of soil particles. J. Geotech. Eng. 111(10), 1177–1192 (1985)CrossRefGoogle Scholar
  5. 5.
    Lade, P.V., Yamamuro, J.A.: Undrained sand behavior in axisymmetric tests at high pressures. J. Geotech. Eng. 122(2), 120–129 (1996)CrossRefGoogle Scholar
  6. 6.
    Yamamuro, J.A., Lade, P.V.: Drained sand behavior in axisymmetric tests at high pressures. J. Geotech. Eng. 122(2), 109–119 (1996)CrossRefGoogle Scholar
  7. 7.
    Lade, P.V., Yamamuro, J.A., Bopp, P.A.: Significance of particle crushing in granular materials. J. Geotech. Eng. 122(4), 309–316 (1996)CrossRefGoogle Scholar
  8. 8.
    Varadarajan, A., Sharma, K.G., Venkatachalam, K., Gupta, A.K.: Testing and modeling two rockfill materials. J. Geotech. Geoenviron. Eng. 129(3), 206–218 (2003)CrossRefGoogle Scholar
  9. 9.
    Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  10. 10.
    Kun, F., Herrmann, H.J.: A study of fragmentation processes using a discrete element method. Comput. Methods Appl. Mech. Eng. 138, 3–18 (1996)zbMATHADSCrossRefGoogle Scholar
  11. 11.
    Potapov, A.V., Campbell, C.S.: Computer simulation of impact-induced particle breakage. Powder Technol. 81(3), 207–216 (1994)CrossRefGoogle Scholar
  12. 12.
    Potapov, A.V., Campbell, C.S.: Parametric dependence of particle breakage mechanisms. Powder Technol. 120(3), 164–174 (2001)CrossRefGoogle Scholar
  13. 13.
    Sheikh, B., Pak, A.: Numerical investigation of the effects of porosity and tortuosity on soil permeability using coupled three-dimensional discrete-element method and lattice Boltzmann method. Phys. Rev. E 91(5), 053301-1–053301-14 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Sheikh, B., Qiu, T.: Pore-scale simulation and statistical investigation of velocity and drag force distribution of flow through randomly-packed porous media under low and intermediate Reynolds numbers. Comput. Fluids 171, 15–28 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Cantor, D., Estrada, N., Azéma, E.: Split-cell method for grain fragmentation. Comput. Geotech. 67, 150–156 (2015)CrossRefGoogle Scholar
  16. 16.
    Nguyen, D.H., Azéma, E., Sornay, P., Radjai, F.: Bonded-cell model for particle fracture. Phys. Rev. E 91(2), 022203 (2015)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Nguyen, D.H., Azéma, E., Sornay, P., Radjai, F.: Rheology of granular materials composed of crushable particles. Eur. Phys. J. E 41(4), 50–60 (2018)CrossRefGoogle Scholar
  18. 18.
    Robertson, D., Bolton, M.D.: DEM simulations of crushable grains and soils. Powders Grains 1, 623–626 (2001)Google Scholar
  19. 19.
    McDowell, G.R., Harireche, O.: Discrete element modelling of soil particle fracture. Geotechnique 52(2), 131–135 (2002)CrossRefGoogle Scholar
  20. 20.
    Cheng, Y.P., Bolton, M.D., Nakata, Y.: Crushing and plastic deformation of soils simulated using DEM. Geotechnique 54(2), 131–141 (2004)CrossRefGoogle Scholar
  21. 21.
    Bolton, M.D., Nakata, Y., Cheng, Y.P.: Micro-and macro-mechanical behaviour of DEM crushable materials. Geotechnique 58(6), 471–480 (2008)CrossRefGoogle Scholar
  22. 22.
    McDowell, G.R., de Bono, J.P.: On the micro mechanics of one-dimensional normal compression. Geotechnique 63(11), 895–908 (2013)CrossRefGoogle Scholar
  23. 23.
    de Bono, J.P., McDowell, G.R.: DEM of triaxial tests on crushable sand. Granul. Matter 16(4), 551–562 (2014)CrossRefGoogle Scholar
  24. 24.
    de Bono, J.P., McDowell, G.R.: Particle breakage criteria in discrete-element modelling. Geotechnique 66(12), 1014–1027 (2016)CrossRefGoogle Scholar
  25. 25.
    Hosseininia, E.S., Mirghasemi, A.A.: Numerical simulation of breakage of two-dimensional polygon-shaped particles using discrete element method. Powder Technol. 166(2), 100–112 (2006)CrossRefGoogle Scholar
  26. 26.
    Hosseininia, E.S., Mirghasemi, A.A.: Effect of particle breakage on the behavior of simulated angular particle assemblies. Particuology 5(5), 328–336 (2007)CrossRefGoogle Scholar
  27. 27.
    Bagherzadeh-Khalkhali, A., Mirghasemi, A.A., Mohammadi, S.: Micromechanics of breakage in sharp-edge particles using combined DEM and FEM. Particuology 6(5), 347–361 (2008)CrossRefGoogle Scholar
  28. 28.
    Bagherzadeh-Khalkhali, A., Mirghasemi, A.A., Mohammadi, S.: Numerical simulation of particle breakage of angular particles using combined DEM and FEM. Powder Technol. 205(1), 15–29 (2011)CrossRefGoogle Scholar
  29. 29.
    Luo, T., Ooi, E.T., Chan, A.H., Fu, S.J.: The combined scaled boundary finite-discrete element method: grain breakage modelling in cohesion-less granular media. Comput. Geotech. 88, 199–221 (2017)CrossRefGoogle Scholar
  30. 30.
    Ma, G., Zhou, W., Chang, X.L.: Modeling the particle breakage of rockfill materials with the cohesive crack model. Comput. Geotech. 61, 132–143 (2014)CrossRefGoogle Scholar
  31. 31.
    Ma, G., Zhou, W., Chang, X.L., Chen, M.X.: A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granul. Matter 18(1), 7 (2016)CrossRefGoogle Scholar
  32. 32.
    Ma, G., Zhou, W., Regueiro, R.A., Wang, Q., Chang, X.: Modeling the fragmentation of rock grains using computed tomography and combined FDEM. Powder Technol. 308, 388–397 (2017)CrossRefGoogle Scholar
  33. 33.
    Raisianzadeh, J., Mirghasemi, A.A., Mohammadi, S.: 2D simulation of breakage of angular particles using combined DEM and XFEM. Powder Technol. 336, 282–297 (2018)CrossRefGoogle Scholar
  34. 34.
    Mirghasemi, A.A., Rothenburg, L., Matyas, E.L.: Numerical simulations of assemblies of two-dimensional polygon-shaped particles and effects of confining pressure on shear strength. Soils Found. 37(3), 43–52 (1997)CrossRefGoogle Scholar
  35. 35.
    Mirghasemi, A.A., Rothenburg, L., Matyas, E.L.: Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles. Geotechnique 52(3), 209–217 (2002)CrossRefGoogle Scholar
  36. 36.
    O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. Spon Press (an imprint of Taylor & Francis), London (2011)Google Scholar
  37. 37.
    Mohammadi, S.: Extended Finite Element Method: For Fracture Analysis of Structures. Blackwell Publishing, Oxford (2008)zbMATHCrossRefGoogle Scholar
  38. 38.
    Mohammadi, S.: XFEM Fracture Analysis of Composites. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  39. 39.
    Hoek, E., Brown, E.T.: Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 34(8), 1165–1186 (1997)CrossRefGoogle Scholar
  40. 40.
    Lambe, T.W., Whitman, R.V.: Soil Mechanics SI Version. Wiley, New York (2008)Google Scholar
  41. 41.
    Voivret, C., Radjai, F., Delenne, J.Y., El Youssoufi, M.S.: Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102(17), 178001 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Voivret, C., Radjai, F., Delenne, J.Y., El Youssoufi, M.S.: Space-filling properties of polydisperse granular media. Phys. Rev. E 76(2), 021301 (2009)zbMATHADSCrossRefGoogle Scholar
  43. 43.
    Azéma, E., Linero, S., Estrada, N., Lizcano, A.: Shear strength and microstructure of polydisperse packings: the effect of size span and shape of particle size distribution. Phys. Rev. E 96(2), 022902 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    Estrada, N., Oquendo, W.F.: Microstructure as a function of the grain size distribution for packings of frictionless disks: effects of the size span and the shape of the distribution. Phys. Rev. E 96(4), 042907 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Rothenburg, L., Bathurst, R.J., Dusseault, M.B.: Micromechanical ideas in constitutive modelling of granular materials. In: Biarez, J., Gourves, R. (eds.) Powders and Grains, pp. 355–363. Balkema, Rotterdam (1989)Google Scholar
  46. 46.
    Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989)CrossRefGoogle Scholar
  47. 47.
    Rothenburg, L., Bathurst, R.J.: Micromechanical features of granular assemblies with planar elliptical particles. Geotechnique 42(1), 79–95 (1992)CrossRefGoogle Scholar
  48. 48.
    Rothenburg, L.: Micromechanics of idealized granular systems. Doctoral Dissertation, Department of Civil Engineering, Carlton University, Ottawa, Canada (1980)Google Scholar
  49. 49.
    Estrada, N.: Effects of grain size distribution on the packing fraction and shear strength of frictionless disk packings. Phys. Rev. E 94(6), 062903 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations