Eigenparticles: characterizing particles using eigenfaces


The shape characteristics of particles have a pinnacle role in microsopic and macroscopic features of a system. Several studies have highlighted the need for considering deviations from a spherical representation of particles for accurate modeling of granular and multiphase flow systems. Using a shape factor, sphericity or roundness parameter alone is proven to be inadequate to capture the physical phenomena. In the present study we propose a novel metric based on the pattern recognition method Eigenfaces, coining the technique ‘Eigenparticles’. Using this technique we create a single statistical distribution of basis shapes to describe the morphological composition. The proposed technique is successfully validated with test shapes and applied to real particles. When compared with a state-of-the-art Fourier based method, ‘Eigenparticles’ performs favorably, clearly distinguishing the different particles.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. 1.


  1. 1.

    Azéma, E., Preechawuttipong, I., Radjai, F.: Binary mixtures of disks and elongated particles: texture and mechanical properties. Phys. Rev. E 94, 042901 (2016).

  2. 2.

    Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Compute. Graph. Appl. 1(1), 11–23 (1981)

  3. 3.

    Bowman, E.T., Soga, K., Drummond, W.: Particle shape characterisation using fourier descriptor analysis. Geotechnique 51(6), 545–554 (2001)

  4. 4.

    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–741 (1995)

  5. 5.

    Clark, M.W.: Quantitative shape analysis: a review. J. Int. Assoc. Math. Geol. 13(4), 303–320 (1981)

  6. 6.

    Cleary, P.W., Sawley, M.L.: Dem modelling of industrial granular flows: 3d case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)

  7. 7.

    Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

  8. 8.

    Dong, K., Wang, C., Yu, A.: A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chem. Eng. Sci. 126, 500–516 (2015)

  9. 9.

    Hayward, J., Orford, J.D., Whalley, W.B.: Three implementations of fractal analysis of particle outlines. Comput. Geosci. 15(2), 199–207 (1989)

  10. 10.

    Heywood, H.: Particle shape coefficitnts. J. Imp. Coll. Chem. Soc. 8, 25–33 (1954)

  11. 11.

    Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 696–706 (2002)

  12. 12.

    Jin, F., Xin, H., Zhang, C., Sun, Q.: Probability-based contact algorithm for non-spherical particles in dem. Powder Technol. 212(1), 134–144 (2011)

  13. 13.

    Karhunen, K.: Zur spektral theorie stochastischer prozesse. Ann. Acad. Sci. Fennicæ A 1, 34 (1946)

  14. 14.

    Kiryati, N., Maydan, D.: Calculating geometric properties from fourier representation. Pattern Recognit. 22(5), 469–475 (1989)

  15. 15.

    Kosambi, D.: Statistics in function space. J. Indian Math. Soc. 7, 76–88 (1943)

  16. 16.

    Krumbein, W.C.: Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Res. 11(2), 64–72 (1941)

  17. 17.

    Kurihara, T., Shu, Z., Ono, N., Ando, S.: A facial authentication system using complex valued eigenfaces. In: SICE 2004 Annual Conference, vol 3, pp. 2584–2587. IEEE (2004)

  18. 18.

    Langston, P.A., Al-Awamleh, M.A., Fraige, F.Y., Asmar, B.N.: Distinct element modelling of non-spherical frictionless particle flow. Chem. Eng. Sci. 59(2), 425–435 (2004)

  19. 19.

    Lee, J., Ghosh, K., Stang, P.J.: Stoichiometric control of multiple different tectons in coordination-driven self-assembly: preparation of fused metallacyclic polygons. J. Am. Chem. Soc. 131(34), 12028–12029 (2009)

  20. 20.

    Leung, C., Lee, F., NS, Y.: The role of particle breakage in pile creep in sand. Can. Geotech. J. 33(6), 888–898 (1996)

  21. 21.

    Lizama, E., Waldoestl, D., Nickolay, B.: An eigenfaces-based automatic face recognition system. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol 1, pp 174–177. IEEE (1997)

  22. 22.

    Loève, M.: Functions aleatoire de second ordre. Comptes Rendus de l’Académie des Sciences 220 (1945)

  23. 23.

    Lu, G., Third, J., Müller, C.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015)

  24. 24.

    Luerkens, D.W., Beddow, J.K., Vetter, A.: Morphological fourier descriptors. Powder Technol. 31(2), 209–215 (1982)

  25. 25.

    Markauskas, D., Ramírez-Gómez, Á., Kačianauskas, R., Zdancevičius, E.: Maize grain shape approaches for dem modelling. Comput. Electron. Agric. 118, 247–258 (2015)

  26. 26.

    Nassauer, B., Liedke, T., Kuna, M.: Polyhedral particles for the discrete element method. Granul. Matter 15(1), 85–93 (2013)

  27. 27.

    Nie, Z., Liang, Z., Wang, X.: A three-dimensional particle roundness evaluation method. Granul. Matter 20(2), 32 (2018)

  28. 28.

    Nouguier-Lehon, C., Cambou, B., Vincens, E.: Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. Numer. Anal. Methods Geomech. 27(14), 1207–1226 (2003)

  29. 29.

    Obukbov, A.M.: Statistical description of continuous fields. Trudy Geofizicheskogo Instituta Akademiya Nauk SSSR 24, 3–42 (1954)

  30. 30.

    Oda, M.: Initial fabrics and their relations to mechanical properties of granular material. Powder Technol. 12(1), 17–36 (1972)

  31. 31.

    Orford, J., Whalley, W.: The use of the fractal dimension to quantify the morphology of irregular-shaped particles. Sedimentology 30(5), 655–668 (1983)

  32. 32.

    Oschmann, T., Hold, J., Kruggel-Emden, H.: Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed. Powder Technol. 258, 304–323 (2014)

  33. 33.

    Ouhbi, N., Voivret, C., Perrin, G., Roux, J.N.: 3d particle shape modelling and optimization through proper orthogonal decomposition. Granul. Matter 19(4), 86 (2017).

  34. 34.

    Pougachev, V.S.: General theory of the correlations of random functions. Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya Bulletin de l’Académie des Sciences de l’URSS (1953)

  35. 35.

    Rittenhouse, G.: A visual method of estimating two-dimensional sphericity. J. Sediment. Res. 13(2), 79–81 (1943)

  36. 36.

    Rousé, P., Fannin, R., Shuttle, D.: Influence of roundness on the void ratio and strength of uniform sand. Géotechnique 58(3), 227–231 (2008)

  37. 37.

    Santamarina, C., Cascante, G.: Effect of surface roughness on wave propagation parameters. Géotechnique 48(1), 129–136 (1998)

  38. 38.

    Shinohara, K., Oida, M., Golman, B.: Effect of particle shape on the angle of internal friction by triaxial compression test. Powder Technol. 107(1), 131–136 (2000)

  39. 39.

    Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. Josa A 4(3), 519–524 (1987)

  40. 40.

    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1), 71–86 (1991)

  41. 41.

    Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: European Conference on Computer Vision, pp. 589–600. Springer (2006)

  42. 42.

    Vallejo, L.E.: Fractal analysis of granular materials. Int. J. Rock Mech. Min. Sci. Geomech. 8, 371A (1995)

  43. 43.

    Wadell, H.: Volume, shape and roundness of rock particles. J. Geol. 40(5), 443–451 (1932)

  44. 44.

    Williams, J.R., Pentland, A.P.: Superquadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. 9(2), 115–127 (1992)

  45. 45.

    Wu, C.Y.: Dem simulations of die filling during pharmaceutical tabletting. Particuology 6(6), 412–418 (2008)

  46. 46.

    Xu, C., Wang, Y., Tan, T., Quan, L.: A new attempt to face recognition using 3d eigenfaces. In: Proceedings of the Asian Conference on Computer Vision, vol 2, pp 884–889. Citeseer (2004)

  47. 47.

    Yi, H., Hao, J., Duan, L., Tang, X., Ning, P., Li, X.: Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in china. Fuel 87(10–11), 2050–2057 (2008)

  48. 48.

    Zheng, J., Hryciw, R.: Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Géotechnique 65(6), 494–506 (2015)

  49. 49.

    Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: Dem/cfd-dem modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108–152 (2016)

  50. 50.

    Zhou, J., Guang Lu, X., Zhang, D., Wu, C.Y.: Orientation analysis for rotated human face detection. Image Vis. Comput. 20(4), 257–264 (2002)

Download references


The work has been supported by the Oakridge Institute for Science and Education (ORISE). The authors are grateful for the support and guidance provided by the US Department of Energy’s National Energy Technology Laboratory, particularly support from Dr. Bill Rogers. The work was also supported in part through the Engineering and Physical Sciences Research Council, UK (Grant Number R/147129).

Author information

Correspondence to J. E. Higham.

Ethics declarations

Conflict of interest

The authors can confirm there are no conflicts of interest associated to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Higham, J.E., Vaidheeswaran, A., Benavides, K. et al. Eigenparticles: characterizing particles using eigenfaces. Granular Matter 21, 45 (2019) doi:10.1007/s10035-019-0900-z

Download citation


  • Particle characterization
  • Particle shape
  • Principle components analysis
  • Eigenparticles
  • Eigenfeatures
  • Eigenfaces