Granular Matter

, 21:42 | Cite as

Non-invasive measurement of floating–sinking motion of a large object in a gas–solid fluidized bed

  • Wataru Yoshimori
  • Tomoki Ikegai
  • Koshi Uemoto
  • Shohei Narita
  • Shusaku HaradaEmail author
  • Jun Oshitani
  • Takuya Tsuji
  • Hirokazu Kajiwara
  • Kei Matsuoka
Original Paper


A Lagrangian sensor system has been established to non-invasively measure both the vertical position and dynamic force acting on itself. It consists of a 3-axis acceleration sensor, a 3-axis magnetometer, a microcontroller, a wireless module, batteries, and external electromagnetic coils. In this study, we applied the system to a free-moving coarse object in a gas–solid fluidized bed. The floating and sinking motions of the object in the fluidized bed are essentially caused by differences between its density and the apparent density of the fluidized media. However, the object sometimes shows strange behavior under the influence of variance in the fluidization state. We measured the temporal change of the upward force acting on the object as well as the vertical position, which is invisible from the outside. The experimental results indicate that the force acting on the object differs significantly between the floating and sinking states and is greatly complicated by interference with rising bubbles in the fluidized bed. The probability density of the vertical position of the object shows that its motion is explained not only by hydrostatic effects, but also by inhomogeneity of the fluidization state in the bed.


Fluidized bed Lagrangian sensor Non-invasive measurement Gas-solid flow Fluid force 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Brennen, C.E.: Fundamentals of Multiphase Flows. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  2. 2.
    Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Dover Pub. Inc., Mineola (1978)Google Scholar
  3. 3.
    Wadke, P.M., Hounslow, M.J., Salman, A.D.: The smart sphere: experimental results. Chem. Eng. Res. Des. 83, 1298–1302 (2005)CrossRefGoogle Scholar
  4. 4.
    Wadke, P.M., Salman, A.D., Hounslow, M.J.: The smart temperature sphere: application in rotary drum mixers. Pow. Tech. 185, 274–279 (2008)CrossRefGoogle Scholar
  5. 5.
    Shew, W.L., Gasteuil, Y., Gibert, M., Metz, P., Pinton, J.-F.: Instrumented tracer for Lagrangian measurements in Rayleigh–Bnard convection. Rev. Sci. Instrum. 78, 065165 (2007)CrossRefGoogle Scholar
  6. 6.
    Gasteuil, Y., Shew, W.L., Gibert, M., Chillá, F., Castaing, B., Pinton, J.-F.: Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh–Bénard convection. Phys. Rev. Lett. 99, 234302 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Harada, S., Kobayashi, Y., Sawano, T., Noguchi, E.: Direct measurement of fluid force on a particle in liquid by telemetry system. Int. J. Multiphase Flow 37, 898–905 (2011)CrossRefGoogle Scholar
  8. 8.
    Oshitani, J., Sasaki, T., Tsuji, T., Higashida, K., Chan, D.Y.C.: Anomalous sinking of spheres due to local fluidization of apparently fixed powder beds. Phys. Rev. Lett. 116, 068001 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Penn, A., Tsuji, T., Brunner, D.O., Boyce, C.M., Pruessmann, K.P., Müller, C.R.: Real-time probing of granular dynamics with magnetic resonance. Sci. Adv. 3, e1701879 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Oshitani, J., Kajimoto, S., Yoshida, M., Franks, G.V., Kubo, Y., Nakatsukasa, S.: Continuous float-sink density separation of lump iron ore using a dry sand fluidized bed dense medium. Adv. Pow. Tech. 24, 468–472 (2013)CrossRefGoogle Scholar
  11. 11.
    Kawaguchi, T.: MRI measurement of granular flows and fluid-particle flows. Adv. Powder Technol. 21, 235–241 (2010)CrossRefGoogle Scholar
  12. 12.
    Sun, J., Yan, Y.: Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: a review. Meas. Sci. Technol. 27, 112001 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Higashida, K., Rai, K., Yoshimori, W., Ikegai, T., Tsuji, T., Harada, S., Oshitani, J., Tanaka, T.: Dynamic vertical forces working on a large object floating in gas-fluidized bed: discrete particle simulation and Lagrangian measurement. Chem. Eng. Sci. 151, 105–115 (2016)CrossRefGoogle Scholar
  14. 14.
    Thiele, S., Silva, J.D., Hampel, U.: Autonomous sensor particle for parameter tracking in large vessels. Meas. Sci. Technol. 21, 085201 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Reinecke, S.F., Deutschmann, A., Jobst, K., Kryk, H., Friedrich, E., Hampel, U.: Flow following sensor particlesValidation and macro-mixing analysis in a stirred fermentation vessel with a highly viscous substrate. Biochem. Eng. J. 69, 159–171 (2014)CrossRefGoogle Scholar
  16. 16.
    Reinecke, S.F., Deutschmann, A., Jobst, K., Hampel, U.: Macro-mixing characterisation of a stirred model fermenter of non-Newtonian liquid by flow following sensor particles and ERT. Chem. Eng. Res. Des. 118, 1–11 (2017)CrossRefGoogle Scholar
  17. 17.
    Köhler, A., Rasch, A., Pallarés, D., Johnsson, F.: Experimental characterization of axial fuel mixing in fluidized beds by magnetic particle tracking. Powder Technol. 316, 492–499 (2017)CrossRefGoogle Scholar
  18. 18.
    Akeila, E., Salcic, Z., Swain, A.: Smart pebble for monitoring riverbed sediment transport. IEEE. Sens. J. 10, 1705–1717 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Neuwirth, J., Antonyuk, S., Heinrich, S., Jacob, M.: Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed. Chem. Eng. Sci. 21, 151–163 (2013)CrossRefGoogle Scholar
  20. 20.
    Sánchez-Colina, G., Alonso-Llanes, L., Martínez, E., Batista-Leyva, A.J., Clement, C., Fliedner, C., Toussaint, R., Altshuler, E.: Note: lock-in accelerometry to follow sink dynamics in shaken granular matter. Rev. Sci. Instrum. 85, 126101 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Altshuler, E., Torres, H., González-Pita, A., Sánchez-Colina, G., Pérez-Penichet, C., Waitukaitis, S., Hidalgo, R.C.: Settling into dry granularmedia in different gravities. Geophys. Res. Lett. 41, 3032–3037 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Sunday, C., Murdoch, N., Cherrier, O., Morales Serrano, S., Valeria Nardi, C., Janin, T., Avila Martinez, I., Gourinat, Y., Mimoun, D.: A novel facility for reduced-gravity testing: a setup for studying low-velocity collisions into granular surfaces, Rev. Sci. Instrum. 87, 084504 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Caviezel, A., Gerber, W.: Brief communication: measuring rock decelerations and rotation changes during short-duration ground impacts. Nat. Hazards Earth Syst. Sci. 18, 3145–3151 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, Hoboken (1999)zbMATHGoogle Scholar
  25. 25.
    Geldart, D.: Types of gas fluidization. Powder Technol. 7, 285–292 (1973)CrossRefGoogle Scholar
  26. 26.
    Tsuji, T., Higashida, K., Okuyama, Y., Tanaka, T.: Fictitious particle method: a numerical model for flows including dense solids with large size difference. AIChE J. 60, 1606–1620 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Faculty of EngineeringOkayama University of ScienceOkayamaJapan
  3. 3.Graduate School of EngineeringOsaka UniversitySuitaJapan
  4. 4.Ebara Environmental Plant Co., LTD.TokyoJapan
  5. 5.Ebara CorporationTokyoJapan

Personalised recommendations