Granular Matter

, 21:29 | Cite as

Particle size effects on the contact force distribution in compacted polydisperse granular assemblies

  • Raghuram Karthik Desu
  • Ratna Kumar AnnabattulaEmail author
Original Paper


Contact force distribution in a polydisperse granular assembly under uniaxial compaction is investigated using DEM simulations. In general, the contact force network generated in a compacted granular assembly is inhomogeneous. The effect of the relative particle size distribution on the nature of the contact force network in a compacted polydisperse granular assembly is investigated. The probability distribution and cumulative distribution of the normal contact forces for particles of different radii in a polydisperse granular assembly are analyzed. Distribution of the coordination number and the maximum force on each particle in a group of particles of the same size are also investigated. The study reveals that the larger particles have a higher probability of experiencing stronger contact forces than the smaller particles. The smaller particles in the assembly experience a lower maximum force and coordination number when compared to the larger particles. The small particles are observed to escape from the force chains by occupying the voids formed amongst the larger particles in the assemblies with considerable particle size variation. The particle size effect on the contact force distribution reduces as the size difference between the particles reduces. The knowledge of the distribution of the contact forces in a polydisperse assembly helps in estimating the probability of crushing amongst particles of different sizes.


Contact force Coordination number Discrete element method Force network Particle size effect Polydisperse granular assembly 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Akella, V.S., Bandi, M.M., George, H., Hentschel, E., Procaccia, I., Roy, S.: Force distributions in frictional granular media. Phys. Rev. E 98, 012905 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    Annabattula, R.K., Gan, Y., Kamlah, M.: Mechanics of binary and polydisperse spherical pebble assembly. Fusion Eng. Des. 87(5), 853–858 (2012)CrossRefGoogle Scholar
  3. 3.
    Antony, S.J.: Evolution of force distribution in three-dimensional granular media. Phys. Rev. E 63(1), 011302 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  5. 5.
    Desu, R.K., Gan, Y., Kamlah, M., Annabattula, R.K.: Mechanics of binary crushable granular assembly through discrete element method. Nucl. Mater. Energy 9, 237–241 (2016)CrossRefGoogle Scholar
  6. 6.
    Drescher, A., De Jong, G.D.J.: Photoelastic verification of a mechanical model for the ow of a granular material. J. Mech. Phys. Solids 20(5), 337–340 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    Gan, Y., Kamlah, M.: Discrete element modelling of pebble beds: with application to uniaxial compression tests of ceramic breeder pebble beds. J. Mech. Phys. Solids 58(2), 129–144 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Gan, Y., Kamlah, M., Reimann, J.: Computer simulation of packing structure in pebble beds. Fusion Eng. Des. 85(10–12), 1782–1787 (2010)CrossRefGoogle Scholar
  9. 9.
    Mueth, D.M., Jaeger, H.M., Nagel, S.R.: Force distribution in a granular medium. Phys. Rev. E 57(3), 3164 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Radjai, F., Roux, S.: Friction-induced self-organization of a onedimensional array of particles. Phys. Rev. E 51(6), 6177 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Radjai, F., Jean, M., Moreau, J.-J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77(2), 274 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Thornton, C.: Force transmission in granular media. Kona Powder Part. J. 15, 81–90 (1997)CrossRefGoogle Scholar
  13. 13.
    Wiacek, J., Stasiak, M.: Effect of the particle size ratio on the structural properties of granular mixtures with discrete particle size distribution. Granul. Matter 20(2), 31 (2018)CrossRefGoogle Scholar
  14. 14.
    Wiacek, J., Molenda, M.: Effect of particle size distribution on micro-and macromechanical response of granular packings under compression. Int. J. Solids Struct. 51(25–26), 4189–4195 (2014)CrossRefGoogle Scholar
  15. 15.
    Yang, Y., Cheng, Y.M.: A fractal model of contact force distribution and the unified coordination distribution for crushable granular materials under confined compression. Powder Technol. 279, 1–9 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Yu, Y., Saxén, H.: Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres. Adv. Powder Technol. 22(3), 324–331 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanics of Materials Laboratory, Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations