Advertisement

Granular Matter

, 21:30 | Cite as

X-ray CT analysis of the evolution of ballast grain morphology along a Micro-Deval test: key role of the asperity scale

  • Ivan Deiros QuintanillaEmail author
  • Gaël Combe
  • Fabrice Emeriault
  • Charles Voivret
  • Jean-François Ferellec
Original Paper
  • 52 Downloads

Abstract

Ballast grains in railway tracks progressively wear due to the efforts exerted by the continuous passage of trains and the periodic maintenance operations. The initial sharp edges and vertices of the grains tend to become smoother and the surface texture is removed. This change in morphology plays a key role on the proper behaviour of the ballast layer and, consequently, on the frequency maintenance required on the track. The object of this paper is to improve the understanding of the wear process by tracking the morphology of a sample of grains submitted to an accelerated ageing using the Micro-Deval standard test. To this goal, X-ray Computed Tomography is used to scan a sample of grains at different states of wear and the resulting images are compared using 3D image analysis. A description of morphology evolution at different scales is provided using scalar parameters and spherical harmonic analysis, proving that the general form is not significantly changed during a standard Micro-Deval test. Thus a detailed analysis at the asperity level is performed, showing the key role of the edge broadening and vertex smoothing phenomena on ballast wear.

Keywords

Railway ballast X-ray CT Grain morphology Micro-Deval 

Notes

Acknowledgements

This work has been supported by the Lines, Track and Environment Department in Engineering and Projects of SNCF-Réseau and by the Laboratoire 3SR. Laboratoire 3SR is part of the LabEx Tec 21 (Investissements d’Avenir Grant Agreement Number ANR-11-LABX-0030).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ando, E.: Experimental investigation of microstructural changes in deforming granular media using X-ray tomography. Theses, Université de Grenoble (2013). https://tel.archives-ouvertes.fr/tel-01144326
  2. 2.
    Azéma, E.: Numerical study of granular material composed by polyedric grains : quasi-static rheology, vibrationnal dynamic and application to tamping process. Theses, Université Montpellier II—Sciences et Techniques du Languedoc (2007). https://tel.archives-ouvertes.fr/tel-00184757
  3. 3.
    Azéma, E., Radjai, F., Dubois, F.: Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 87(062203), 1–15 (2013).  https://doi.org/10.1103/PhysRevE.87.062203 CrossRefGoogle Scholar
  4. 4.
    Azéma, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41(6), 729–741 (2009).  https://doi.org/10.1016/j.mechmat.2009.01.021. (Advances in the dynamics of granular materials)
  5. 5.
    Barksdale, R.D., Kemp, M.A., Sheffield, W.J., Hubbard, J.L.: Measurement of aggregate shape, surface area, and roughness. Transportation Research Record (1301) (1991)Google Scholar
  6. 6.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975).  https://doi.org/10.1145/361002.361007 CrossRefzbMATHGoogle Scholar
  7. 7.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992).  https://doi.org/10.1109/34.121791 CrossRefGoogle Scholar
  8. 8.
    Quintanilla, I.D., Combe, G., Emeriault, F., Toni, J.-B., Voivret, C., Ferellec, J.F.: Wear of sharp aggregates in a rotating drum. EPJ Web Conf. 140 07009, (2017).  https://doi.org/10.1051/epjconf/201714007009
  9. 9.
    Domokos, G., Jerolmack, D.J., Sipos, A.Á., Török, Á.: How river rocks round: resolving the shape-size paradox. PLOS One 9(2), 1–7 (2014).  https://doi.org/10.1371/journal.pone.0088657 CrossRefGoogle Scholar
  10. 10.
    Ferellec, J.F., McDowell, G.: A simple method to create complex particle shapes for dem. Geomech. Geoeng. 3(3), 211–216 (2008).  https://doi.org/10.1080/17486020802253992 CrossRefGoogle Scholar
  11. 11.
    Garboczi, E.J.: Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: application to aggregates used in concrete. Cem. Concr. Res. 32, 1621–1638 (2002)CrossRefGoogle Scholar
  12. 12.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 209–216. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1997).  https://doi.org/10.1145/258734.258849
  13. 13.
    Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632–658 (2005).  https://doi.org/10.1016/j.cagd.2005.06.005. (Geometric Modelling and Differential Geometry)
  14. 14.
    Guennebaud, G., Gross, M.: Algebraic point set surfaces. ACM Trans. Gr. 26(3), 23–9 (2007)CrossRefGoogle Scholar
  15. 15.
    Hoppe, H.: New quadric metric for simplifying meshes with appearance attributes. In: Proceedings of the 10th IEEE Visualization 1999 Conference (VIS ’99), VISUALIZATION ’99. IEEE Computer Society, Washington, DC, USA (1999). http://dl.acm.org/citation.cfm?id=832273.834119
  16. 16.
    Hsieh, J.: Computed Tomography: Principles, Design, Artifacts, and Recent Advances, 2nd edn., vol. PM188. SPIE Press Monograph (2009).  https://doi.org/10.1117/3.817303
  17. 17.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993).  https://doi.org/10.1109/34.232073 CrossRefGoogle Scholar
  18. 18.
    Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., Vinod, J.S.: Behavior of fresh and fouled railway ballast subjected to direct shear testing: discrete element simulation. Int. J. Geomech. 14(1), 34–44 (2014).  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000264 CrossRefGoogle Scholar
  19. 19.
    Irazábal González, J.: Numerical analysis of railway ballast behaviour using discrete element method. Ph.D. thesis, Universitat Politècnica de Catalunya (2017). https://www.tesisenred.net/handle/10803/461536
  20. 20.
    Kim, H., Haas, C., Rauch, A., Browne, C.: Wavelet-based three-dimensional descriptors of aggregate particles. J Transp. Res. Rec. 1787, 109–116 (2002)CrossRefGoogle Scholar
  21. 21.
    Kline, M.: Calculus: an intuitive and physical approach. Dover books on mathematics. Dover, New York (1998)Google Scholar
  22. 22.
    Krumbein, W.C.: Measurement and geological significance of shape and roundness of sedimentary particles. J Sediment. Res. 11(2), 64 (1941).  https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D CrossRefGoogle Scholar
  23. 23.
    Kutay, M.E., Ozturk, H.I., Abbas, A.R., Hu, C.: Comparison of 2d and 3d image-based aggregate morphological indices. Int. J. Pavement Eng. 12(4), 421–431 (2011).  https://doi.org/10.1080/10298436.2011.575137 CrossRefGoogle Scholar
  24. 24.
    Lecocq, C.: La dégradation du ballast. Memoire. Chaire de Contructions Civiles. Conservatoire National des Arts et Metiers (1985)Google Scholar
  25. 25.
    Lim, W.L.: Mechanics of railway ballast behaviour. Ph.D. thesis, University of Nottingham (2004). http://eprints.nottingham.ac.uk/10060/
  26. 26.
    Lu, M.: Discrete element modelling of railway ballast. Ph.D. thesis, University of Nottingham (2008). http://eprints.nottingham.ac.uk/10611/
  27. 27.
    Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1), 69 (2006).  https://doi.org/10.1007/s10035-006-0021-3 CrossRefGoogle Scholar
  28. 28.
    Masad, E., Saadeh, S., Al-Rousan, T., Garboczi, E., Little, D.: Computations of particle surface characteristics using optical and X-ray CT images. Comput. Mater. Sci. 34(4), 406–424 (2005).  https://doi.org/10.1016/j.commatsci.2005.01.010 CrossRefGoogle Scholar
  29. 29.
    McDowell, G.R., Li, H.: Discrete element modelling of scaled railway ballast under triaxial conditions. Granul. Matter 18(3), 66 (2016).  https://doi.org/10.1007/s10035-016-0663-8 CrossRefGoogle Scholar
  30. 30.
    McDowell, G.R., Lim, W.L., Collop, A.C., Armitage, R., Thom, N.H.: Comparison of ballast index tests for railway trackbeds. In: Proceedings of the Institution of Civil Engineers—Geotechnical Engineering, vol. 157(3), pp. 151–161 (2004).  https://doi.org/10.1680/geng.2004.157.3.151
  31. 31.
    Mitchell, J., Soga, K.: Fundamentals of soil behavior. Wiley, New York (2005). https://books.google.fr/books?id=b_dRAAAAMAAJ
  32. 32.
    NF EN 1097-1: Tests for mechanical and physical properties of aggregates—part 1. Determination of the resistance to wear (micro-deval). Standard, AFNOR (2011)Google Scholar
  33. 33.
    NF EN 13450: Aggregates for railway ballast. Standard, AFNOR (2003)Google Scholar
  34. 34.
    Ouhbi, N., Voivret, C., Perrin, G., Roux, J.N.: 3d particle shape modelling and optimization through proper orthogonal decomposition. Granul. Matter 19(4), 86 (2017).  https://doi.org/10.1007/s10035-017-0771-0 CrossRefGoogle Scholar
  35. 35.
    Quezada, J.C.: Mechanisms of ballast settlement and its variability. Theses, Université Montpellier II—-Sciences et Techniques du Languedoc (2012). https://tel.archives-ouvertes.fr/tel-01067945
  36. 36.
    Saint-Cyr, B., Szarf, K., Voivret, C., Azéma, E., Richefeu, V., Delenne, J.Y., Combe, G., Nouguier-Lehon, C., Villard, P., Sornay, P., Chaze, M., Radjai, F.: Particle shape dependence in 2d granular media. Europhys. Lett. (EPL) 98(4), 44008 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Saussine, G.: Contribution for the modelling of three-dimensional granular matter : study of railway ballast. Theses, Université Montpellier II—Sciences et Techniques du Languedoc (2004). https://tel.archives-ouvertes.fr/tel-00077519
  38. 38.
    Selig, E.T., Waters, J.M.: Track Geotechnology and Substructure Management. Thomas Telford Publishing (1994).  https://doi.org/10.1680/tgasm.20139
  39. 39.
    Voivret, C., Nhu, V.H., Perales, R.: Discrete element method simulation as a key tool towards performance design of ballasted tracks. Int. J. Railw. Technol. 5, 83–98 (2016)CrossRefGoogle Scholar
  40. 40.
    Voivret, C., Perales, R., Saussine, G.: Ballasted track maintenance with a multi-unit tamping machine: A numerical discrete efficiency comparison. In: Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance, 53. Civil-Comp Press (2014)Google Scholar
  41. 41.
    Wang, L., Park, J.Y., Fu, Y.: Representation of real particles for dem simulation using X-ray tomography. Constr. Build. Mater. 21(2), 338–346 (2007).  https://doi.org/10.1016/j.conbuildmat.2005.08.013 CrossRefGoogle Scholar
  42. 42.
    Wang, L.B., Frost, J.D., Lai, J.S.: Three-dimensional digital representation of granular material microstructure from X-ray tomography imaging. J. Comput. Civil Eng. 18(1), 28–35 (2004)CrossRefGoogle Scholar
  43. 43.
    Zingg, T.: Beitrag zur schotteranalyse. Ph.D. thesis, ETH Zurich (1935).  https://doi.org/10.3929/ethz-a-000103455. SA aus: Schweizerische mineralogische und petrographische Mitteilungen, Band 15, 1935, S.39-140. Diss. Naturwiss. ETH Zürich, Nr. 849, 1935 (Ref.: Niggli, P. ; Korref.: Burri, C)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université Grenoble Alpes, 3SRGrenobleFrance
  2. 2.CNRS, 3SRGrenobleFrance
  3. 3.SNCF Réseau, Direction Ingénierie et ProjetsLa Plaine Saint-DenisFrance

Personalised recommendations