Advertisement

Granular Matter

, 21:26 | Cite as

Modes of wall induced granular crystallisation in vibrational packing

  • Weijing Dai
  • Joerg Reimann
  • Dorian Hanaor
  • Claudio Ferrero
  • Yixiang GanEmail author
Original Paper

Abstract

Granular crystallisation is an important phenomenon whereby ordered packing structures form in granular matter under vibration. However, compared with the well-developed principles of crystallisation at the atomic scale, crystallisation in granular matter remains relatively poorly understood. To investigate this behaviour further and bridge the fields of granular matter and materials science, we simulated mono-dispersed spheres confined in cylindrical containers to study their structural dynamics during vibration. By applying adequate vibration, disorder-to-order transitions were induced. Such transitions were characterised at the particle scale through bond orientation order parameters. As a result, emergent crystallisation was indicated by the enhancement of the local order of individual particles and the number of ordered particles. The observed heterogeneous crystallisation was characterised by the evolution of the spatial distributions via coarse-graining the order index. Crystalline regimes epitaxially grew from templates formed near the container walls during vibration, here termed the wall effect. By varying the geometrical dimensions of cylindrical containers, the obtained crystallised structures were found to differ at the cylindrical wall zone and the planar bottom wall zone. The formed packing structures were quantitatively compared to X-ray tomography results using again these order parameters. The findings here provide a microscopic perspective for developing laws governing structural dynamics in granular matter.

Keywords

Granular matter Packing Vibration Boundary effects Crystallisation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255(5051), 1523 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    de Gennes, P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71(2), S374–S382 (1999)CrossRefGoogle Scholar
  3. 3.
    Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R Rep. 63(1), 1–30 (2008)CrossRefGoogle Scholar
  4. 4.
    Pouliquen, O., Nicolas, M., Weidman, P.D.: Crystallization of non-Brownian spheres under horizontal shaking. Phys. Rev. Lett. 79(19), 3640–3643 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Carvente, O., Ruiz-Suárez, J.C.: Crystallization of confined non-Brownian spheres by vibrational annealing. Phys. Rev. Lett. 95(1), 018001 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    An, X., Yang, R., Dong, K., Yu, A.: DEM study of crystallization of monosized spheres under mechanical vibrations. Comput. Phys. Commun. 182(9), 1989–1994 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Saadatfar, M., Takeuchi, H., Robins, V., Francois, N., Hiraoka, Y.: Pore configuration landscape of granular crystallization. Nat. Commun. 8, 15082 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Shinde, D.P., Mehta, A., Barker, G.C.: Shaking-induced crystallization of dense sphere packings. Phys. Rev. E 89(2), 022204 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Dong, K., Wang, C., Yu, A.: A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chem. Eng. Sci. 126, 500–516 (2015)CrossRefGoogle Scholar
  10. 10.
    Tai, S.-C., Hsiau, S.-S.: The flow regime during the crystallization state and convection state on a vibrating granular bed. Adv. Powder Technol. 20(4), 335–349 (2009)CrossRefGoogle Scholar
  11. 11.
    Mehta, A., Barker, G.C.: Vibrated powders: a microscopic approach. Phys. Rev. Lett. 67(3), 394–397 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Ratnaswamy, V., Rosato, A.D., Blackmore, D., Tricoche, X., Ching, N., Zuo, L.: Evolution of solids fraction surfaces in tapping: simulation and dynamical systems analysis. Granul. Matter 14(2), 163–168 (2012).  https://doi.org/10.1007/s10035-012-0343-2 CrossRefGoogle Scholar
  13. 13.
    Barker, G.C., Mehta, A.: Transient phenomena, self-diffusion, and orientational effects in vibrated powders. Phys. Rev. E 47(1), 184–188 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    Zhao, J., Jiang, M., Soga, K., Luding, S.: Micro origins for macro behavior in granular media. Granul. Matter 18(3), 1–5 (2016).  https://doi.org/10.1007/s10035-016-0662-9 ADSCrossRefGoogle Scholar
  15. 15.
    Richard, P., Nicodemi, M., Delannay, R., Ribiere, P., Bideau, D.: Slow relaxation and compaction of granular systems. Nat. Mater. 4(2), 121–128 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Yu, A.B., An, X.Z., Zou, R.P., Yang, R.Y., Kendall, K.: Self-assembly of particles for densest packing by mechanical vibration. Phys. Rev. Lett. 97(26), 265501 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Rosato, A.D., Dybenko, O., Horntrop, D.J., Ratnaswamy, V., Kondic, L.: Microstructure evolution in density relaxation by tapping. Phys. Rev. E 81(6), 061301 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Philippe, P., Bideau, D.: Granular medium under vertical tapping: change of compaction and convection dynamics around the liftoff threshold. Phys. Rev. Lett. 91(10), 104302 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Lan, Y., Rosato, A.D.: Convection related phenomena in granular dynamics simulations of vibrated beds. Phys. Fluids 9(12), 3615–3624 (1997).  https://doi.org/10.1063/1.869499 ADSCrossRefGoogle Scholar
  20. 20.
    Carvente, O., Ruiz-Suárez, J.C.: Self-assembling of dry and cohesive non-Brownian spheres. Phys. Rev. E 78(1), 011302 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Nahmad-Molinari, Y., Ruiz-Suárez, J.C.: Epitaxial growth of granular single crystals. Phys. Rev. Lett. 89(26), 264302 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Panaitescu, A., Kudrolli, A.: Epitaxial growth of ordered and disordered granular sphere packings. Phys. Rev. E 90(3), 032203 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    An, X.Z., Yang, R.Y., Dong, K.J., Zou, R.P., Yu, A.B.: Micromechanical simulation and analysis of one-dimensional vibratory sphere packing. Phys. Rev. Lett. 95(20), 205502 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Boutreux, T., de Geennes, P.G.: Compaction of granular mixtures: a free volume model. Phys. A 244(1), 59–67 (1997)CrossRefGoogle Scholar
  25. 25.
    Saadatfar, M., Kabla, A., Senden, T., Aste, T.: The geometry and the number of contacts of monodisperse sphere packs using X-ray tomography. In: Powders and Grains 2005-Proceedings of the 5th International Conference on Micromechanics of Granular Media 2005, pp. 33–36Google Scholar
  26. 26.
    Hanifpour, M., Francois, N., Robins, V., Kingston, A., Vaez Allaei, S.M., Saadatfar, M.: Structural and mechanical features of the order-disorder transition in experimental hard-sphere packings. Phys. Rev. E 91(6), 062202 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Reimann, J., Brun, E., Ferrero, C., Vicente, J.: Pebble bed structures in the vicinity of concave and convex walls. Fusion Eng. Des. 98–99, 1855–1858 (2015)CrossRefGoogle Scholar
  28. 28.
    Francois, N., Saadatfar, M., Cruikshank, R., Sheppard, A.: Geometrical frustration in amorphous and partially crystallized packings of spheres. Phys. Rev. Lett. 111(14), 148001 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Lumay, G., Vandewalle, N.: Experimental study of granular compaction dynamics at different scales: grain mobility, hexagonal domains, and packing fraction. Phys. Rev. Lett. 95(2), 028002 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Komatsu, Y., Tanaka, H.: Roles of energy dissipation in a liquid–solid transition of out-of-equilibrium systems. Phys. Rev. X 5(3), 031025 (2015)Google Scholar
  31. 31.
    Reimann, J., Vicente, J., Brun, E., Ferrero, C., Gan, Y., Rack, A.: X-ray tomography investigations of mono-sized sphere packing structures in cylindrical containers. Powder Technol. 318(Supplement C), 471–483 (2017)CrossRefGoogle Scholar
  32. 32.
    Russo, J., Tanaka, H.: The microscopic pathway to crystallization in supercooled liquids. Sci. Rep. 2, 505 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Goodrich, C.P., Liu, A.J., Nagel, S.R.: Solids between the mechanical extremes of order and disorder. Nat. Phys. 10(8), 578–581 (2014)CrossRefGoogle Scholar
  34. 34.
    Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. 12(2–3), 140–152 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    An, X.Z., Yang, R.Y., Zou, R.P., Yu, A.B.: Effect of vibration condition and inter-particle frictions on the packing of uniform spheres. Powder Technol. 188(2), 102–109 (2008)CrossRefGoogle Scholar
  36. 36.
    Steinhardt, P.J., Nelson, D.R., Ronchetti, M.: Bond-orientational order in liquids and glasses. Phys. Rev. B 28(2), 784–805 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    Kansal, A.R., Torquato, S., Stillinger, F.H.: Diversity of order and densities in jammed hard-particle packings. Phys. Rev. E 66(4), 041109 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    ten Wolde, P.-R., Ruiz-Montero, M.J., Frenkel, D.: Simulation of homogeneous crystal nucleation close to coexistence. Faraday Discuss. 104, 93–110 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter 12(3), 239–252 (2010)CrossRefGoogle Scholar
  40. 40.
    Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granul. Matter 14(2), 289–294 (2012)CrossRefGoogle Scholar
  41. 41.
    Goldhirsch, I.: Introduction to granular temperature. Powder Technol. 182(2), 130–136 (2008)CrossRefGoogle Scholar
  42. 42.
    Hsiau, S.S., Lu, L.S., Tai, C.H.: Experimental investigations of granular temperature in vertical vibrated beds. Powder Technol. 182(2), 202–210 (2008)CrossRefGoogle Scholar
  43. 43.
    Rietz, F., Radin, C., Swinney, H.L., Schröter, M.: Nucleation in sheared granular matter. Phys. Rev. Lett. 120(5), 055701 (2018).  https://doi.org/10.1103/PhysRevLett.120.055701 ADSCrossRefGoogle Scholar
  44. 44.
    Aste, T., Saadatfar, M., Senden, T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E 71(6), 061302 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Tanaka, H.: Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization. Eur. Phys. J. E 35(10), 113 (2012)CrossRefGoogle Scholar
  46. 46.
    Berryman, J.T., Anwar, M., Dorosz, S., Schilling, T.: The early crystal nucleation process in hard spheres shows synchronised ordering and densification. J. Chem. Phys. 145(21), 211901 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    Rycroft, C.H., Grest, G.S., Landry, J.W., Bazant, M.Z.: Analysis of granular flow in a pebble-bed nuclear reactor. Phys. Rev. E 74(2), 021306 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Nowak, E.R., Knight, J.B., Ben-Naim, E., Jaeger, H.M., Nagel, S.R.: Density fluctuations in vibrated granular materials. Phys. Rev. E 57(2), 1971–1982 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    Panaitescu, A., Reddy, K.A., Kudrolli, A.: Nucleation and crystal growth in sheared granular sphere packings. Phys. Rev. Lett. 108(10), 108001 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Heitkam, S., Drenckhan, W., Fröhlich, J.: Packing spheres tightly: influence of mechanical stability on close-packed sphere structures. Phys. Rev. Lett. 108(14), 148302 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    Fujine, M., Sato, M., Katsuno, H., Suzuki, Y.: Effect of container shape and walls on solidification of Brownian particles in a narrow system. Phys. Rev. E 89(4), 042401 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    Arai, S., Tanaka, H.: Surface-assisted single-crystal formation of charged colloids. Nat. Phys. 13(5), 503–509 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil EngineeringThe University of SydneySydneyAustralia
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fachgebiet Keramische WerkstoffeTechnische Universität BerlinBerlinGermany
  4. 4.ESRF-The European SynchrotronGrenobleFrance

Personalised recommendations