Advertisement

Granular Matter

, 21:28 | Cite as

Micro-scale investigation of the role of finer grains in the behavior of bidisperse granular materials

  • Habib Taha
  • Ngoc-Son NguyenEmail author
  • Didier Marot
  • Abbas Hijazi
  • Khalil Abou-Saleh
Original Paper
  • 3 Downloads

Abstract

This paper presents a numerical study of the effect of fine content on the mechanical behavior of bidisperse granular materials using the discrete element method. Triaxial compression tests are performed on different samples with fine contents varied from 0 to 40%. It was found that, starting from 20%, fine content has a visible effect on the shear strength. The optimal fine content is about 30%, at which the shear strength is the best. An investigation into the granular micro-structure showed that the fine particles, on one hand, come into contact with coarse particles, but on the other hand, separate the latter ones as fine content increases beyond 20%. Thus, the part of the shear stress carried by the coarse–fine contacts increases, while the part carried by the coarse–coarse contacts decreases. For fine content ≤ 30%, the coarse–coarse contacts primarily carry the shear stress. Above this optimal fine content, the fine–coarse contacts overtake the coarse–coarse ones. The fine–fine contacts have little contribution to supporting the shear stress. For the studied range of fine content, the coarse particles primarily carry the shear stress, leaving the fine particles under relatively low stresses. Moreover, the matrix composed of fine particles is greatly softened by the shear loading. A classification of binary mixtures depending on their micro-structure was also proposed.

Keywords

Bidisperse materials Discrete element method Shear loading Micro-structure Stress transmission Contact network 

List of symbols

\(f_c\)

Fine content

\(f_n\), \(f_t\)

Normal and tangential contact forces

\(K_n\), \(K_t\)

Normal and tangential contact stiffnesses

\(k_n\), \(k_t\)

Normal and tangential particle stiffnesses

\(E_{\mathrm{m}}\)

Young’s modulus of the particle material

\(\varphi\)

Contact friction angle

\(D_{\mathrm{min}}\), \(D_{\mathrm{max}}\)

Minimum and maximum diameters of coarse particles

\(d_{\mathrm{min}}\), \(d_{\mathrm{max}}\)

Minimum and maximum diameters of fine particles

\(G_{\mathrm{r}}\)

Gap ratio

\(\varvec{\sigma }\)

Stress tensor

p

Mean stress

q

Deviatoric stress

\(\varvec{\varepsilon }\)

Strain tensor

\(\varepsilon _{11}\)

Axial strain

\(\varepsilon _{\mathrm{v}}\)

Volumetric strain

L

Sample size

\(N_c\)

Number of coarse particles

\(N_f\)

Number of fine particles

\(C_{\mathrm{v}}\)

Coefficient of variation

e

Global void ratio

n

Global porosity

\(e_c\)

Intergranular void ratio

\(e_f\)

Interfine void ratio

\(V_{\mathrm{v}}\), \(V_{\mathrm{s}}\)

Void and solid volumes

F, C

Fine and coarse fractions

\(C{-}C\)

Coarse–coarse contacts

\(C{-}F\)

Coarse–fine contacts

\(F{-}F\)

Fine–fine contacts

\({\mathcal{N}}\)

Coordination number

\({\mathcal{N}}_C^{C-C}\)

Average number of \(C{-}C\) contacts per coarse particle

\({\mathcal{N}}_C^{C-F}\)

Average number of \(C{-}F\) contacts per coarse particle

\({\mathcal{N}}_F^{F-F}\)

Average number of \(F{-}F\) contacts per fine particle

\(\varvec{f}^k\)

Force at a given contact k

\(\varvec{l}^k\)

Branch vector joining two particle centers at a given contact k

\(\varvec{\sigma }^{C{-}C}\)

Contribution of the \(C{-}C\) contacts to the macro-stress

\(\varvec{\sigma }^{C{-}F}\)

Contribution of the \(C{-}F\) contacts to the macro-stress

\(\varvec{\sigma }^{F{-}F}\)

Contribution of the \(F{-}F\) contacts to the macro-stress

\(\phi ^\alpha\)

Volume fraction of a given phase \(\alpha\)

\(\varvec{\sigma }^\alpha\)

Intrinsic averaged stress of a given phase \(\alpha\)

\(\widehat{\varvec{\sigma }}^\alpha\)

Partial stress of a given phase \(\alpha\)

\(\varvec{M}^p\)

Internal moment tensor of a given particle p

\(p^F\), \(q^F\)

Mean and deviatoric stresses carried by the fine fraction

\(\alpha\)

Stress reduction factor

\(\alpha _p^F\)

Mean stress ratio for the fine fraction

\(\alpha _q^F\)

Deviatoric stress ratio for the fine fraction

\(\widehat{p}^F\)

Contribution of the fine fraction to the macroscopic mean stress

\(\widehat{q}^F\)

Contribution of the fine fraction to the macroscopic deviatoric stress

Notes

Acknowledgements

The authors would like to thank the charitable and cultural association of Nabatieh-Lebanon and Cedre program of the French and Lebanese scientific cooperation for the financial support for this research project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sail, Y., Marot, D., Sibille, L., Alexis, A.: Suffusion tests on cohesionless granular matter. Eur. J. Environ. Civ. Eng. 15(5), 799–817 (2011)Google Scholar
  2. 2.
    Ke, L., Takahashi, A.: Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow. Soils Found. 52(4), 698–711 (2012)Google Scholar
  3. 3.
    Ke, L., Takahashi, A.: Triaxial erosion test for evaluation of mechanical consequences of internal erosion. Geotech. Test. J. 37(2), 347–364 (2014)Google Scholar
  4. 4.
    Murthy, T., Loukidis, D., Carraro, J., Prezzi, M., Salgado, R.: Undrained monotonic response of clean and silty sands. Géotechnique 57(3), 273–288 (2007)Google Scholar
  5. 5.
    Nguyen, T., Benahmed, N., Hicher, P.Y., Nicolas, M.: The influence of fines content on the onset of instability and critical state line of silty sand. In: Chau, K.T., Zhao, J. (eds.) Bifurcation and Degradation of Geomaterials in the New Millennium, IWBDG 2014, Springer Series in Geomechanics and Geoengineering, pp. 113–120. Springer, Cham (2015)Google Scholar
  6. 6.
    Salgado, R., Bandini, P., Karim, A.: Shear strength and stiffness of silty sand. J. Geotech. Geoenviron. Eng. 126(5), 451–462 (2000)Google Scholar
  7. 7.
    Thevanayagam, S., Shenthan, T., Mohan, S., Liang, J.: Undrained fragility of clean sands, silty sands, and sandy silts. J. Geotech. Geoenviron. Eng. 128(10), 849–859 (2002)Google Scholar
  8. 8.
    Kim, F., Penumadu, D., Gregor, J., Kardjilov, N., Manke, I.: High-resolution neutron and X-ray imaging of granular materials. J. Geotech. Geoenviron. Eng. 139(5), 715–723 (2012)Google Scholar
  9. 9.
    Belheine, N., Plassiard, J., Donzé, F., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1), 320–331 (2009)Google Scholar
  10. 10.
    Minh, N., Cheng, Y.: On the contact force distributions of granular mixtures under 1D-compression. Granul. Matter 18(2), 1–12 (2016)ADSGoogle Scholar
  11. 11.
    Minh, N., Cheng, Y., Thornton, C.: Strong force networks in granular mixtures. Granul. Matter 16(1), 69–78 (2014)Google Scholar
  12. 12.
    Shire, T., O’Sullivan, C.: Micromechanical assessment of an internal stability criterion. Acta Geotech. 8(1), 81–90 (2013)Google Scholar
  13. 13.
    Shire, T., O’Sullivan, C., Hanley, K.: The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials. Granul. Matter 18(3), 1–10 (2016)Google Scholar
  14. 14.
    Voivret, C., Radjai, F., Delenne, J.Y., El Youssoufi, M.: Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102(17), 178001 (2009)ADSzbMATHGoogle Scholar
  15. 15.
    Dai, B., Yang, J., Luo, X.: A numerical analysis of the shear behavior of granular soil with fines. Particuology 21, 160–172 (2015)Google Scholar
  16. 16.
    Ng, T.T., Zhou, W., Chang, X.L.: Effect of particle shape and fine content on the behavior of binary mixture. J. Eng. Mech. 143(1), C4016008-1–C4016008-9 (2016)Google Scholar
  17. 17.
    Aboul-Hosn, R.: Suffusion and its effects on the mechanical behavior of granular soils: numerical and experimental investigations. Ph.D. thesis, Université Grenoble Alpes (2016)Google Scholar
  18. 18.
    Luding, S.: Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. Eur. J. Environ. Civ. Eng. 12(7–8), 785–826 (2008)Google Scholar
  19. 19.
    Radjai, F., Richefeu, V.: Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41(6), 715–728 (2009)Google Scholar
  20. 20.
    Šmilauer, V., et al.: Yade Documentation 2nd ed. The Yade Project (2015).  https://doi.org/10.5281/zenodo.34073. http://yade-dem.org/doc/
  21. 21.
    Scholtès, L., Hicher, P.Y., Sibille, L.: Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Mécanique 338(10–11), 627–638 (2010)ADSzbMATHGoogle Scholar
  22. 22.
    Chang, D., Zhang, L.: Extended internal stability criteria for soils under seepage. Soils Found. 53(4), 569–583 (2013)Google Scholar
  23. 23.
    Thevanayagam, S., Mohan, S.: Intergranular state variables and stress-strain behaviour of silty sands. Géotechnique 50(1), 1–23 (2000)Google Scholar
  24. 24.
    ASTM D4767–88.: Standard test method for consolidated-undrained triaxial compression test on cohesive soils. Standard ASTM 04.08 (1988)Google Scholar
  25. 25.
    NF P 94-074: Sols.: reconnaissances et essais—Essais à l’appareil triaxial de révolution. AFNOR (Association Français de Normalisation) (1994)Google Scholar
  26. 26.
    Wiącek, J., Molenda, M.: Representative elementary volume analysis of polydisperse granular packings using discrete element method. Particuology 27, 88–94 (2016)Google Scholar
  27. 27.
    Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul. Matter 11(4), 221–236 (2009)zbMATHGoogle Scholar
  28. 28.
    Shire, T., O’Sullivan, C., Hanley, K., Fannin, R.: Fabric and effective stress distribution in internally unstable soils. J. Geotech. Geoenviron. Eng. 140(12), 04014072-1–04014072-11 (2014)Google Scholar
  29. 29.
    Chareyre, B.: Modélisation du comportement d’ouvrages composites sol-géosynthétique par éléments discrets: application aux ancrages en tranchées en tête de talus. Ph.D. thesis, Université Grenoble I-Joseph Fourrier (2003)Google Scholar
  30. 30.
    Skempton, A., Brogan, J.: Experiments on piping in sandy gravels. Géotechnique 44(3), 449–460 (1994)Google Scholar
  31. 31.
    Lade, P., Liggio, C., Yamamuro, J.: Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech. Test. J. 21(4), 336–347 (1998)Google Scholar
  32. 32.
    Holtzman, R., Silin, D., Patzek, T.: Mechanical properties of granular materials: a variational approach to grain-scale simulations. Int. J. Numer. Anal. Meth. Geomech. 33(3), 391–404 (2009)zbMATHGoogle Scholar
  33. 33.
    Suiker, A., Fleck, N.: Frictional collapse of granular assemblies. J. Appl. Mech. 71(3), 350–358 (2004)ADSzbMATHGoogle Scholar
  34. 34.
    Yan, G., Yu, H.S., McDowell, G.: Simulation of granular material behaviour using DEM. Proc. Earth Planet. Sci. 1(1), 598–605 (2009)Google Scholar
  35. 35.
    Yang, Z., Yang, J., Wang, L.: On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis. Granul. Matter 14(3), 433–447 (2012)Google Scholar
  36. 36.
    Minh, N., Cheng, Y.: A DEM investigation of the effect of particle-size distribution on one-dimensional compression. Géotechnique 63, 44–53 (2013)Google Scholar
  37. 37.
    Shire, T., O’Sullivan, C., Hanley, K.: The influence of finer fraction and size-ratio on the micro-scale properties of dense bimodal materials. In: Soga, K., Kumar, K., Biscontin, G., Kuo, M. (eds.) Proceedings of the TC105 ISSMGE International Symposium on Geomechanics from Micro to Macro, pp. 231–236, Cambridge, UK, September 2014.Google Scholar
  38. 38.
    Radjai, F., Wolf, D.: Features of static pressure in dense granular media. Granul. Matter 1(1), 3–8 (1998)zbMATHGoogle Scholar
  39. 39.
    Thornton, C.: Force transmission in granular media. KONA Powder Parti. J. 15, 81–90 (1997)Google Scholar
  40. 40.
    Christoffersen, J., Mehrabadi, M., Nemat-Nasser, S.: A micromechanical description of granular material behavior. J. Appl. Mech. 48(2), 339–344 (1981)ADSzbMATHGoogle Scholar
  41. 41.
    Moreau, J.: Numerical investigation of shear zones in granular materials. In: Wolf, D.E., Grassberger, P. (eds.) Friction, Arching, Contact Dynamics, pp. 233–247, World Scientific, Singapore (1997)Google Scholar
  42. 42.
    Staron, L., Radjai, F., Vilotte, J.: Multi-scale analysis of the stress state in a granular slope in transition to failure. Eur. Phys. J. E Soft Matter Biol. Phys. 18(3), 311–320 (2005)Google Scholar
  43. 43.
    Calvetti, F., Viggiani, G., Tamagnini, C.: A numerical investigation of the incremental behavior of granular soils. Rivista Italiana Di Geotecnica 3, 11–29 (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GeM InstituteUniversity of NantesSaint-Nazaire CedexFrance
  2. 2.MPLAB-Multisciplinary Physics Laboratory, Faculty of SciencesLebanese UniversityHadat-BaabdaLebanon

Personalised recommendations