# Stress fluctuations during monotonic loading of dense three-dimensional granular materials

- 95 Downloads

## Abstract

The paper examines the sudden and irregular fluctuations of stress that are commonly observed in DEM and laboratory tests of slow monotonic loading of granular materials. The stresss fluctuations occur as stress-drops that are spaced in an irregular, random manner as the material is loaded, and occur at an average rate of about 0.05 drops per particle per one percent of strain. Each fluctuation is accompanied by a drop in the number of contacts and in the number of sliding contacts, a brief increase in the particles’ kinetic energy, a reduction in the elastic energy of the contacts, and a reduction in bulk volume. Stress-drops are shown to originate within small regions of the larger assembly and are likely the result of a multi-slip mechanism. An advanced discrete element method (DEM) is used in the study, with non-convex non-spherical particles and an exact implementation of the Hertz-like Cattaneo–Mindlin contact model. The simulations reveal differences with the avalanche phenomenon of amorphous solids, in particular the different scalings of stress-drop magnitude with assembly size and drop frequency.

## Keywords

Granular material Instability Micro-mechanics Energy dissipation Second-order work Plasticity Discrete element method## Notes

### Compliance with ethical standards

### Conflict of interest

The authors declare that they have no conflict of interest.

## Supplementary material

## References

- 1.Roux, J.-N., Combe, G.: On the meaning and microscopic origins of quasistatic deformation of granular materials, In: Proceedings of the 16th ASCE Engineering Mechanics Conference, vol. 759, ASCE, pp. 1–5 (2003)Google Scholar
- 2.Alshibli, K., Alramahi, B.: Microscopic evaluation of strain distribution in granular materials during shear. J. Geotech. Geoenviron. Eng.
**132**(1), 80–91 (2006). https://doi.org/10.1061/(ASCE)1090-0241(2006)132:1(80) CrossRefGoogle Scholar - 3.Kuhn, M.R., Bagi, K.: Specimen size effect in discrete element simulations of granular assemblies. J. Eng. Mech.
**135**(6), 485–492 (2009)CrossRefGoogle Scholar - 4.Sun, W., Ostien, J.T., Salinger, A.G.: A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain. Int. J. Numer. Anal. Methods Geomech.
**37**(16), 2755–2788 (2013)Google Scholar - 5.Nicot, F., Hadda, N., Sibille, L., Radjai, F., Hicher, P.-Y., Darve, F.: Some micromechanical aspects of failure in granular materials based on second-order work. Comptes Rendus Mécanique
**342**(3), 174–188 (2014)ADSCrossRefGoogle Scholar - 6.Denisov, D.V., Lörincz, K.A., Uhl, J.T., Dahmen, K.A., Schall, P.: Universality of slip avalanches in flowing granular matter. Nat. Commun.
**7**, 10641 (2016)ADSCrossRefGoogle Scholar - 7.Cui, D., Wu, W., Xiang, W., Doanh, T., Chen, Q., Wang, S., Liu, Q., Wang, J.: Stick-slip behaviours of dry glass beads in triaxial compression. Granul. Matter
**19**(1), 1 (2017)ADSCrossRefGoogle Scholar - 8.Peters, J.F., Walizer, L.E.: Patterned nonaffine motion in granular media. J. Eng. Mech.
**139**(10), 1479–1490 (2013)CrossRefGoogle Scholar - 9.Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique
**50**(1), 43–53 (2000)CrossRefGoogle Scholar - 10.Michlmayr, G., Cohen, D., Or, D.: Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media–a review. Earth Sci. Rev.
**112**(3), 97–114 (2012)ADSCrossRefGoogle Scholar - 11.Michlmayr, G., Cohen, D., Or, D.: Shear-induced force fluctuations and acoustic emissions in granular material. J. Geophys. Res. Solid Earth
**118**(12), 6086–6098 (2013)ADSCrossRefGoogle Scholar - 12.Ingraham, M.D., Issen, K.A., Holcomb, D.J.: Use of acoustic emissions to investigate localization in high-porosity sandstone subjected to true triaxial stresses. Acta Geotech.
**8**(6), 645–663 (2013)CrossRefGoogle Scholar - 13.Daouadji, A., Hicher, P.Y., Jrad, M., Sukumaran, B., Belouettar, S.: Experimental and numerical investigation of diffuse instability in granular materials using a microstructural model under various loading paths. Géotechnique
**63**(5), 368 (2013)CrossRefGoogle Scholar - 14.Nicot, F., Daouadji, A., Hadda, N., Jrad, M., Darve, F.: Granular media failure along triaxial proportional strain path. Eur. J. Environ. Civil Eng.
**17**(9), 777–790 (2013)CrossRefGoogle Scholar - 15.Nguyen, H.N.G., Prunier, F., Djeran-Maigre, I., Nicot, F.: Kinetic energy and collapse of granular materials. Granul. Matter
**18**(1), 1–10 (2016)CrossRefGoogle Scholar - 16.Lerner, E., Procaccia, I.: Locality and nonlocality in elastoplastic responses of amorphous solids. Phys. Rev. E
**79**(6), 066109 (2009)ADSCrossRefGoogle Scholar - 17.Hentschel, H.G.E., Karmakar, S., Lerner, E., Procaccia, I.: Size of plastic events in strained amorphous solids at finite temperatures. Phys. Rev. Lett.
**104**(2), 025501 (2010)ADSCrossRefGoogle Scholar - 18.Dasgupta, R., Karmakar, S., Procaccia, I.: Universality of the plastic instability in strained amorphous solids. Phys. Rev. Lett.
**108**(7), 075701 (2012)ADSCrossRefGoogle Scholar - 19.Zhang, D., Dahmen, K.A., Ostoja-Starzewski, M.: Scaling of slip avalanches in sheared amorphous materials based on large-scale atomistic simulations. Phys. Rev. E
**95**(3), 032902 (2017)ADSCrossRefGoogle Scholar - 20.Daouadji, A., Darve, F., Al Gali, H., Hicher, P.Y., Laouafa, F., Lignon, S., Nicot, F., Nova, R., Pinheiro, M., Prunier, F., et al.: Diffuse failure in geomaterials: experiments, theory and modelling. Int. J. Numer. Anal. Methods Geomech.
**35**(16), 1731–1773 (2011)CrossRefGoogle Scholar - 21.Kuhn, M.R.: Implementation of the Jäger contact model for discrete element simulations. Int. J. Numer. Methods Eng.
**88**(1), 66–82 (2011)CrossRefGoogle Scholar - 22.Kuhn, M.R., Renken, H., Mixsell, A., Kramer, S.: Investigation of cyclic liquefaction with discrete element simulations. J. Geotech. Geoenviron. Eng.
**140**(12), 04014075 (2014). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001181 CrossRefGoogle Scholar - 23.Arulmoli, K., Muraleetharan, K.K., Hossain, M.M., Fruth, L.S.: VELACS verification of liquefaction analyses by centrifuge studies laboratory testing program soil data report, Technical Report Project No. 90-0562, The Earth Technology Corporation, Irvine, CA, data available through http://yees.usc.edu/velacs (1992). Accessed 21 Dec 2011
- 24.Sibille, L., Hadda, N., Nicot, F., Tordesillas, A., Darve, F.: Granular plasticity, a contribution from discrete mechanics. J. Mech. Phys. Solids
**75**, 119–139 (2015)ADSCrossRefGoogle Scholar - 25.Laouafa, F., Prunier, F., Daouadji, A., Al Gali, H., Darve, F.: Stability in geomechanics, experimental and numerical analyses. Int. J. Numer. Anal. Methods.eomech
**35**(2), 112–139 (2011)CrossRefGoogle Scholar - 26.Cabalar, A.F.: Stress fluctuations in granular material response during cyclic direct shear test. Granul. Matter
**17**(4), 439–446 (2015)MathSciNetCrossRefGoogle Scholar - 27.Roux, J.-N., Combe, G.: Quasistatic rheology and the origins of strain. C. R. Phys.
**3**(2), 131–140 (2002)ADSCrossRefGoogle Scholar - 28.Lin, J., Lerner, E., Rosso, A., Wyart, M.: Scaling description of the yielding transition in soft amorphous solids at zero temperature. Proc. Natl. Acad. Sci.
**111**(40), 14382–14387 (2014)ADSCrossRefGoogle Scholar - 29.Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Wan, R., Darve, F.: Inertia effects as a possible missing link between micro and macro second-order work in granular media. Int. J. Solids Struct.
**49**(10), 1252–1258 (2012)CrossRefGoogle Scholar - 30.Combe, G., Roux, J.-N.: Strain versus stress in a model granular material: a devil’s staircase. Phys. Rev. Lett.
**85**(17), 3628–3631 (2000)ADSCrossRefGoogle Scholar - 31.Dahmen, K.A., Ben-Zion, Y., Uhl, J.T.: Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett.
**102**(17), 175501 (2009)ADSCrossRefGoogle Scholar - 32.Dahmen, K.A.: Mean field theory of slip statistics. In: Salje, E., Planes, A. (eds.) Avalanches in Functional Materials and Geophysics, pp. 19–30. Springer, Berlin (2017)CrossRefGoogle Scholar
- 33.Sun, Q., Jin, F., Liu, J., Zhang, G.: Understanding force chains in dense granular materials. Intl. J. Modern Phys. B
**24**(29), 5743–5759 (2010)ADSCrossRefGoogle Scholar - 34.Salerno, K.M., Maloney, C.E., Robbins, M.O.: Avalanches in strained amorphous solids: does inertia destroy critical behavior? Phys. Rev. Lett.
**109**(10), 105703 (2012)ADSCrossRefGoogle Scholar - 35.Lin, J., Wu, W., Borja, R.I.: Micropolar hypoplasticity for persistent shear band in heterogeneous granular materials. Comput. Methods Appl. Mech. Eng.
**289**, 24–43 (2015)ADSMathSciNetCrossRefGoogle Scholar - 36.Michlmayr, G., Or, D.: Mechanisms for acoustic emissions generation during granular shearing. Granul. Matter
**16**(5), 627–640 (2014)CrossRefGoogle Scholar - 37.Li, J., Spaepen, F., Hufnagel, T.C.: Nanometre-scale defects in shear bands in a metallic glass. Philos. Mag. A
**82**(13), 2623–2630 (2002)ADSCrossRefGoogle Scholar - 38.Tordesillas, A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philos. Mag.
**87**(32), 4987–5016 (2007)ADSCrossRefGoogle Scholar - 39.Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids
**57**(4), 706–727 (2009)ADSMathSciNetCrossRefGoogle Scholar - 40.Tordesillas, A., Steer, C.A.H., Walker, D.M.: Force chain and contact cycle evolution in a dense granular material under shallow penetration. Nonlinear Process. Geophys.
**21**(2), 505–519 (2014)ADSCrossRefGoogle Scholar - 41.Kuhn, M.R.: Contact transience during slow loading of dense granular materials, J. Eng. Mech.
**143**(1), 1–9 (2016). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000992 - 42.Sethna, J.P., Dahmen, K.A., Myers, C.R.: Crackling noise. Nature
**410**(6825), 242 (2001)ADSCrossRefGoogle Scholar - 43.Tordesillas, A., Zhang, J., Behringer, R.: Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoeng Int. J.
**4**(1), 3–16 (2009)CrossRefGoogle Scholar - 44.Kuhn, M.R., Bagi, K.: Contact rolling and deformation in granular media. Int. J. Solids Struct.
**41**(21), 5793–5820 (2004)CrossRefGoogle Scholar - 45.Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett.
**80**(1), 61–64 (1998)ADSCrossRefGoogle Scholar - 46.Karmakar, S., Lerner, E., Procaccia, I.: Statistical physics of the yielding transition in amorphous solids. Phys. Rev. E
**82**(5), 055103 (2010)ADSCrossRefGoogle Scholar - 47.Hentschel, H.G.E., Jaiswal, P.K., Procaccia, I., Sastry, S.: Stochastic approach to plasticity and yield in amorphous solids. Phys. Rev. E
**92**(6), 062302 (2015)ADSCrossRefGoogle Scholar - 48.Calvetti, F., Viggiani, G., Tamagnini, C.: A numerical investigation of the incremental behavior of granualr soils. Rivista Italiana di Geotecnica
**3**, 11–29 (2003)Google Scholar - 49.Plassiard, J.-P., Belheine, N., Donzé, F.-V.: A spherical discrete element model: calibration procedure and incremental response. Granul. Matter
**11**(5), 293–306 (2009)CrossRefGoogle Scholar - 50.Kuhn, M.R., Mitchell, J.K.: Modelling of soil creep with the discrete element method. Eng. Comput.
**9**(2), 277–287 (1992)CrossRefGoogle Scholar - 51.Jäger, J.: Uniaxial deformation of a random packing of particles. Arch. Appl. Mech.
**69**(3), 181–203 (1999)ADSCrossRefGoogle Scholar - 52.Walton, K.: The oblique compression of two elastic spheres. J. Mech. Phys. Solids
**26**(3), 139–150 (1978)ADSCrossRefGoogle Scholar - 53.da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E
**72**(2), 021309 (2005)ADSCrossRefGoogle Scholar - 54.Ng, T.-T.: Input parameters of discrete element methods. J. Eng. Mech.
**132**(7), 723–729 (2006)MathSciNetCrossRefGoogle Scholar - 55.Suzuki, K., Kuhn, M.R.: Uniqueness of discrete element simulations in monotonic biaxial shear tests. Int. J. Geomech.
**14**(5), 06014010 (2014). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000365 CrossRefGoogle Scholar