Granular Matter

, 20:37 | Cite as

Merging criteria for defining pores and constrictions in numerical packing of spheres

  • Feda Seblany
  • Ulrike Homberg
  • Eric Vincens
  • Paul Winkler
  • Karl Josef Witt
Original Paper


The void space of granular materials is generally divided into larger local volumes denoted as pores and throats connecting pores. The smallest section in a throat is usually denoted as constriction. A correct description of pores and constrictions may help to understand the processes related to the transport of fluid or fine particles through granular materials, or to build models of imbibition for unsaturated granular media. In the case of numerical granular materials involving packings of spheres, different methods can be used to compute the pore space properties. However, these methods generally induce an over-segmentation of the pore network and a merging step is usually applied to mitigate such undesirable artifacts even if a precise delineation of a pore is somewhat subjective. This study provides a comparison between different merging criteria for pores in packing of spheres and a discussion about their implication on both the pore size distribution and the constriction size distribution of the material. A correspondence between these merging techniques is eventually proposed as a guide for the user.


Delaunay tessellation Voronoï graph Void space Granular materials 



Part of this work belongs to a project funded by Compagnie Nationale du Rhône (CNR). F. Seblany and E. Vincens acknowledge CNR for its interest and its financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Allen, M.P., Wilson, M.R.: Computer simulation of liquid crystals. J. Comput. Aided Mol. Des. 3(4), 335–353 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    Al-Raoush, R., Thompson, K., Willson, C.S.: Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Am. J. 67(6), 1687–1700 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Barreto Gonzalez, D.: Numerical and experimental investigation into the behaviour of granular materials under generalised stress states. Doctoral Dissertation, Imperial College London (2010)Google Scholar
  4. 4.
    Benahmed, N., Canou, J., Dupla, J.C.: Structure initiale et propriétés de liquéfaction statique d’un sable. C. R. Méc. 332(11), 887–894 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bernhardt, M.L., Biscontin, G.: Experimental validation study of 3D direct simple shear DEM simulations. Soils Found. 56(3), 336–347 (2016)CrossRefGoogle Scholar
  6. 6.
    Biarez, J., Hicher, P.Y.: Classification of and Correlations Between Parameters from Elementary Mechanics of Soil Behavior, pp. 81–106. A.A. Balkema, Rotterdam (1994)Google Scholar
  7. 7.
    Bryant, S.L., King, P.R., Mellor, D.W.: Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp. Porous Media 11(1), 53–70 (1993)CrossRefGoogle Scholar
  8. 8.
    Chareyre, B., Cortis, A., Catalano, E., Barthlemy, E.: Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transp. Porous Media 94(2), 595–615 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cui, L., O’Sullivan, C.: Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granul. Matter 5(3), 135–145 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  11. 11.
    Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular triangulations. Algorithmica 15(3), 223–241 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Feng, Y.T., Owen, D.R.J.: Filling domains with disks: an advancing front approach. Int. J. Numer. Methods Eng. 56(5), 699–713 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gao, S., Meegoda, J.N., Hu, L.: Two methods for pore network of porous media. Int. J. Numer. Anal. Methods Geomech. 36(18), 1954–1970 (2012)CrossRefGoogle Scholar
  14. 14.
    Gervois, A., Oger, L., Richard, P., Troadec, J.P.: Voronoï and radical tessellations of packings of spheres. In: International Conference on Computational Science. Springer, Berlin, pp. 95–104 (2002)Google Scholar
  15. 15.
    Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23(1), 9–19 (2006)CrossRefGoogle Scholar
  16. 16.
    Gladkikh, M., Bryant, S.: Prediction of imbibition in unconsolidated granular materials. J. Colloid Interface Sci. 288(2), 526–539 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Homberg, U., Baum, D., Prohaska, S., Kalbe, U., Witt, K.J.: Automatic extraction and analysis of realistic pore structures from \(\mu \)CT data for pore space characterization of graded soil. In: Proceedings of the 6th International Conference Scour and Erosion (ICSE-6), pp. 66–73 (2012)Google Scholar
  18. 18.
    Homberg, U., Baum, D., Wiebel, A., Prohaska, S., Hege, H.C.: Definition, extraction, and validation of pore structures in porous materials. In: Bremer, P.T., Hotz, I., Pascucci, V., Peikert, R. (eds.) Topological Methods in Data Analysis and Visualization III, pp. 235–248. Springer, Berlin (2014)CrossRefGoogle Scholar
  19. 19.
    Kenney, T., Chahal, R., Chiu, E., Ofoegbu, G., Omange, G., Ume, C.: Controlling constriction sizes of granular filters. Can. Geotech. J. 22(1), 32–43 (1985)CrossRefGoogle Scholar
  20. 20.
    Lindow, N., Baum, D., Hege, H.C.: Voronoï-based extraction and visualization of molecular paths. IEEE Trans. Vis. Comput. Graph. 17(12), 2025–2034 (2011)CrossRefGoogle Scholar
  21. 21.
    Locke, M., Indraratna, B.: A new model for the behaviour of granular filters. In: Proceedings of the Fourth Australia New Zealand Young Geotechnical Professionals Conference, vol. 147. University of Western Australia (2000)Google Scholar
  22. 22.
    Locke, M., Indraratna, B., Adikari, G.: Time-dependent particle transport through granular filters. J. Geotech. Geoenviron. Eng. 127(6), 521–529 (2001)CrossRefGoogle Scholar
  23. 23.
    Mason, G., Mellor, D.W.: Simulation of drainage and imbibition in a random packing of equal spheres. J. Colloid Interface Sci. 176(1), 214–225 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Mellor, D.W.: Random close packing (RCP) of equal spheres: structure and implications for use as a model porous medium. Doctoral Dissertation, Open University (1989)Google Scholar
  25. 25.
    Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Numb. Theory 30(1), 51–70 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    O’Sullivan, C., Bluthé, J., Sejpar, K., Shire, T., Cheung, L.Y.G.: Contact based void partitioning to assess filtration properties in DEM simulations. Comput. Geotech. 64, 120–131 (2015)CrossRefGoogle Scholar
  27. 27.
    Radjai, F., Voivret, C.: Periodic boundary conditions. In: Radjai, F., Dubois, F. (eds.) Discrete Numerical Modeling of Granular Materials, pp. 181–198. Wiley-ISTE (2011)Google Scholar
  28. 28.
    Reboul, N., Vincens, E., Cambou, B.: A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granul. Matter 10(6), 457–468 (2008)CrossRefzbMATHGoogle Scholar
  29. 29.
    Reboul, N., Vincens, E., Cambou, B.: A computational procedure to assess the distribution of constriction sizes for an assembly of spheres. Comput. Geotech. 37(1), 195–206 (2010)CrossRefGoogle Scholar
  30. 30.
    Richard, P., Oger, L., Troadec, J.P., Gervois, A.: Tessellation of binary assemblies of spheres. Physica A 259(1), 205–221 (1998)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Roux, J.N., Chevoir, F.: Simulation numérique discrete et comportement mécanique des matériaux granulaires. Bull. Lab. Ponts Chaussées 254, 109 (2005)Google Scholar
  32. 32.
    Schuler, U.: Scattering of the composition of soils: an aspect for the stability of granular filters. Geofilters 96, 21–34 (1996)Google Scholar
  33. 33.
    Seblany, F., Homberg, U., Vincens, E., Winkler, P., Witt, K.J.: Merging criteria for the definition of a local pore and the CSD computation of granular materials. In: Proceedings of the 25th Meeting of European Working Group on Internal Erosion (EWGIE), Delft, pp. 150–159 (2017)Google Scholar
  34. 34.
    Shire, T., O’Sullivan, C.: A network model to assess base-filter combinations. Comput. Geotech. 84, 117–128 (2017)CrossRefGoogle Scholar
  35. 35.
    Silveira, A.: An analysis of the problem of washing through in protective filters. In: Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montréal, QC, pp. 551–555 (1965)Google Scholar
  36. 36.
    Silveira, A., de Lorena Peixoto, T., Nogueira, J.: On void size distribution of granular materials. In: Proceedings of the 5th Pan American Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, pp. 161–177 (1975)Google Scholar
  37. 37.
    Sitharam, T.G., Dinesh, S.V., Shimizu, N.: Micromechanical modelling of monotonic drained and undrained shear behaviour of granular media using three-dimensional DEM. Int. J. Numer. Anal. Methods Geomech. 26(12), 1167–1189 (2002)CrossRefzbMATHGoogle Scholar
  38. 38.
    Sjah, J., Vincens, E.: Determination of the constriction size distribution of granular filters by filtration tests. Int. J. Numer. Anal. Methods Geomech. 37(10), 1231–1246 (2013)CrossRefGoogle Scholar
  39. 39.
    Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránský, J., Thoeni, K.: Yade Documentation. V. Šmilauer ed. (2010)Google Scholar
  40. 40.
    Soria, M., Aramaki, R., Viviani, E.: Experimental determination of void size curves. In: Brauns, J., Heibaum, M., Schuler, U. (eds.) Filters in Geotechnical and Hydraulic Engineering, pp. 43–48. Balkema, Rotterdam (1993)Google Scholar
  41. 41.
    Sufian, A., Russell, A.R., Whittle, A.J., Saadatfar, M.: Pore shapes, volume distribution and orientations in monodisperse granular assemblies. Granul. Matter 17(6), 727–742 (2015)CrossRefGoogle Scholar
  42. 42.
    Thommes, M.: Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82(7), 1059–1073 (2010)CrossRefGoogle Scholar
  43. 43.
    Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)CrossRefGoogle Scholar
  44. 44.
    Vincens, E., Witt, K.J., Homberg, U.: Approaches to determine the constriction size distribution for understanding filtration phenomena in granular materials. Acta Geotech. 10(3), 291–303 (2015)CrossRefGoogle Scholar
  45. 45.
    Vogel, H.J., Roth, K.: Quantitative morphology and network representation of soil pore structure. Adv. Water Resour. 24(3), 233–242 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    Witt, K.J.: Filtrationsverhalten und Bemessung von Erdstoff-Filtern, vol. 104. Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana, Karlsruhe (1986)Google Scholar
  47. 47.
    Yang, R.Y., Zou, R.P., Yu, A.B.: Voronoï tessellation of the packing of fine uniform spheres. Phys. Rev. E 65(4), 041302 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Yang, R.Y., Zou, R.P., Yu, A.B., Choi, S.K.: Pore structure of the packing of fine particles. J. Colloid Interface Sci. 299(2), 719–725 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    Zhang, Z.P., Liu, L.F., Yuan, Y.D., Yu, A.B.: A simulation study of the effects of dynamic variables on the packing of spheres. Powder Technol. 116(1), 23–32 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ecole Centrale de Lyon, LTDS, UMR CNRS 5513Université de LyonEcullyFrance
  2. 2.Department Visual Data AnalysisZuse Institute BerlinDahlem, BerlinGermany
  3. 3.Chair of Geotechnical EngineeringBauhaus-Universität WeimarWeimarGermany

Personalised recommendations