Advertisement

Granular Matter

, 20:35 | Cite as

Segregation of charged particles under shear

  • R. Yoshimatsu
  • N. A. M. Araújo
  • T. Shinbrot
  • H. J. Herrmann
Original Paper
  • 131 Downloads

Abstract

We study segregation of a binary mixture of differently charged particles under shear using particle-based simulations. We simulate particle dynamics using a discrete-element model including electrostatic interactions and find that particles segregate according to their net charge. Particles that are charged twice as strong as other particles of the same electrical sign are seen more at insulating boundaries with which we shear the system. Weakly charged particles, on the other hand, stay more in the center of the sheared bed. To understand this segregation, we propose a simple model based on electrostatic potential energy, which shows that the segregated system we observe in our simulations is indeed the most favorable configuration. Our simulations further show that for a given packing fraction and a given simulation time there is an optimal shear velocity where the segregation is maximal. We show that this maximum results from a competition between diffusional and Coulomb fluxes. For a larger shear velocity, diffusion suppresses segregation as proportional to the fluctuation velocity.

Keywords

Particle segregation Shear flow Electrostatics Discrete element method simulations 

Notes

Acknowledgements

We acknowledge financial support from the European Research Council (ERC) Advanced Grant 319968-FlowCCS and the INCT-SC. NA acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) under Contract No. UID/FIS/00618/2013, and from the Luso-American Development Foundation (FLAD), FLAD/NSF, Proj. 273/2016. TS acknowledges support from the NSF DMR, award \(\sharp \)1404792.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (mov 3548 KB)

References

  1. 1.
    Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78(2), 641 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Duran, J., Rajchenbach, J., Clément, E.: Arching effect model for particle size segregation. Phys. Rev. Lett. 70(16), 2431 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Knight, J.B., Jaeger, H.M., Nagel, S.R.: Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett. 70(24), 3728 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Zik, O., Levine, D., Lipson, S., Shtrikman, S., Stavans, J.: Rotationally induced segregation of granular materials. Phys. Rev. Lett. 73(5), 644 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    Pouliquen, O., Delour, J., Savage, S.B.: Fingering in granular flows. Nature 386(6627), 816 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Hill, K., Fan, Y.: Isolating segregation mechanisms in a split-bottom cell. Phys. Rev. Lett. 101(8), 088001 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Harrington, M., Weijs, J.H., Losert, W.: Suppression and emergence of granular segregation under cyclic shear. Phys. Rev. Lett. 111(7), 078001 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    van der Vaart, K., Gajjar, P., Epely-Chauvin, G., Andreini, N., Gray, J., Ancey, C.: Underlying asymmetry within particle size segregation. Phys. Rev. Lett. 114(23), 238001 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Abreu, C.R., Tavares, F.W., Castier, M.: Influence of particle shape on the packing and on the segregation of spherocylinders via Monte Carlo simulations. Powder Technol. 134(1), 167 (2003)CrossRefGoogle Scholar
  10. 10.
    Kyrylyuk, A.V., van de Haar, M.A., Rossi, L., Wouterse, A., Philipse, A.P.: Isochoric ideality in jammed random packings of non-spherical granular matter. Soft Matter 7(5), 1671 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Shimoska, A., Nousou, I., Shirakawa, Y., Hidaka, J.: Effect of particle shape on size segregation of particles. Chem. Eng. Trans. 32, 2143 (2013)Google Scholar
  12. 12.
    Shinbrot, T., Muzzio, F.J.: Reverse buoyancy in shaken granular beds. Phys. Rev. Lett. 81(20), 4365 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Fan, Y., Hill, K.: Shear-induced segregation of particles by material density. Phys. Rev. E 92(2), 022211 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Gillemot, K.A., Somfai, E., Börzsönyi, T.: Shear-driven segregation of dry granular materials with different friction coefficients. Soft Matter 13(2), 415 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Windows-Yule, C., Weinhart, T., Parker, D., Thornton, A.: Effects of packing density on the segregative behaviors of granular systems. Phys. Rev. Lett. 112(9), 098001 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Félix, G., Thomas, N.: Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221(1), 197 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Kleinhans, M.: Sorting in grain flows at the lee side of dunes. Earth Sci. Rev. 65(1), 75 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Johnson, C., Kokelaar, B., Iverson, R., Logan, M., LaHusen, R., Gray, J.: Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. Earth Surf. 117(F1), F01032 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Kokelaar, B., Graham, R., Gray, J., Vallance, J.: Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet. Sci. Lett. 385, 172 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Haas, T., Braat, L., Leuven, J.R., Lokhorst, I.R., Kleinhans, M.G.: Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments. J. Geophys. Res. Earth Surf. 120(9), 1949 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Makse, H.A., Havlin, S., King, P.R., Stanley, H.E.: Spontaneous stratification in granular mixtures. arXiv preprint cond-mat/9809432 (1998)Google Scholar
  22. 22.
    Ottino, J., Khakhar, D.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32(1), 55 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Shinbrot, T., Muzzio, F.J.: Nonequilibrium patterns in granular mixing and segregation. Phys. Today 53(3), 25 (2000)CrossRefGoogle Scholar
  24. 24.
    Inculet, I., Castle, G., Brown, J.: Electrostatic separation of plastics for recycling. Part. Sci. Technol. 16(1), 91 (1998)CrossRefGoogle Scholar
  25. 25.
    Duke, C.B., Noolandi, J., Thieret, T.: The surface science of xerography. Surf. Sci. 500(1), 1005 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Mehrotra, A., Muzzio, F.J., Shinbrot, T.: Spontaneous separation of charged grains. Phys. Rev. Lett. 99(5), 058001 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Martinez-Duarte, R.: Microfabrication technologies in dielectrophoresis applications review. Electrophoresis 33(21), 3110 (2012)CrossRefGoogle Scholar
  28. 28.
    Kolehmainen, J., Ozel, A., Boyce, C.M., Sundaresan, S.: A hybrid approach to computing electrostatic forces in fluidized beds of charged particles. AIChE J. 62(7), 2282 (2016)CrossRefGoogle Scholar
  29. 29.
    Schella, A., Weis, S., Schroeter, M.: Charging changes contact composition in binary sphere packings. arXiv preprint arXiv:1704.01565 (2017)
  30. 30.
    Pöschel, T., Schwager, T.: Computational Granular Dynamics: Models and Algorithms, Models and Algorithms. Springer, Berlin (2005)Google Scholar
  31. 31.
    Yoshimatsu, R., Araujo, N., Shinbrot, T., Herrmann, H.: Field driven charging dynamics of a fluidized granular bed. Soft Matter 12(29), 6261 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. (1978-present) 30(5), 949 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Boca Raton (1988)CrossRefMATHGoogle Scholar
  34. 34.
    Yoshimatsu, R., Araújo, N., Wurm, G., Herrmann, H., Shinbrot, T.: Self-charging of identical grains in the absence of an external field. Sci. Rep. 7, 39996 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    O’Hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68(1), 011306 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)MATHGoogle Scholar
  37. 37.
    Mehrani, P., Murtomaa, M., Lacks, D.J.: An overview of advances in understanding electrostatic charge buildup in gas–solid fluidized beds. J. Electrostat. 87, 64 (2017)CrossRefGoogle Scholar
  38. 38.
    Lees, A., Edwards, S.: The computer study of transport processes under extreme conditions. J. Phys. C Solid State Phys. 5(15), 1921 (1972)Google Scholar
  39. 39.
    Chaudhuri, B., Mehrotra, A., Muzzio, F.J., Tomassone, M.S.: Cohesive effects in powder mixing in a tumbling blender. Powder Technol. 165(2), 105 (2006)CrossRefGoogle Scholar
  40. 40.
    Hill, K.M., Kakalios, J.: Reversible axial segregation of binary mixtures of granular materials. Phys. Rev. E 49(5), R3610 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549 (1905)CrossRefMATHGoogle Scholar
  42. 42.
    Sutherland, W.: LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Lond. Edinb. Dublin Philos. Mag. J. Sci. 9(54), 781 (1905)CrossRefGoogle Scholar
  43. 43.
    Singh, A., Magnanimo, V., Saitoh, K., Luding, S.: Effect of cohesion on shear banding in quasistatic granular materials. Phys. Rev. E 90(2), 022202 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Tunuguntla, D.R., Bokhove, O., Thornton, A.R.: A mixture theory for size and density segregation in shallow granular free-surface flows. J. Fluid Mech. 749, 99 (2014)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Gonzalez, S., Thornton, A.R., Luding, S.: Free cooling phase-diagram of hard-spheres with short-and long-range interactions. Eur. Phys. J. Spec. Top. 223(11), 2205 (2014)CrossRefGoogle Scholar
  46. 46.
    Müller, M.K., Luding, S.: Homogeneous cooling with repulsive and attractive long-range potentials. Math. Model. Nat. Phenom. 6(4), 118 (2011)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Müller, M.K.: Long-Range Interactions in Dilute Granular Systems. University of Twente, Enschede (2008)Google Scholar
  48. 48.
    Murphy, E., Subramaniam, S.: Binary collision outcomes for inelastic soft-sphere models with cohesion. Powder Technol. 305, 462 (2017)CrossRefGoogle Scholar
  49. 49.
    Murphy, E., Subramaniam, S.: Freely cooling granular gases with short-ranged attractive potentials. Phys. Fluids 27(4), 043301 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Saitoh, K., Mizuno, H.: Anomalous energy cascades in dense granular materials yielding under simple shear deformations. Soft Matter 12(5), 1360 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    Saitoh, K., Takada, S., Hayakawa, H.: Hydrodynamic instabilities in shear flows of dry cohesive granular particles. Soft Matter 11(32), 6371 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    Takada, S., Saitoh, K., Hayakawa, H.: Simulation of cohesive fine powders under a plane shear. Phys. Rev. E 90(6), 062207 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    Forward, K.M., Lacks, D.J., Sankaran, R.M.: Charge segregation depends on particle size in triboelectrically charged granular materials. Phys. Rev. Lett. 102(2), 028001 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Kok, J.F., Lacks, D.J.: Electrification of granular systems of identical insulators. Phys. Rev. E 79(5), 051304 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Waitukaitis, S.R., Lee, V., Pierson, J.M., Forman, S.L., Jaeger, H.M.: Size-dependent same-material tribocharging in insulating grains. Phys. Rev. Lett. 112(21), 218001 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Siu, T., Pittman, W., Cotton, J., Shinbrot, T.: Nonlinear granular electrostatics. Granul. Matter 17(2), 165 (2015)CrossRefGoogle Scholar
  57. 57.
    Lee, V., Waitukaitis, S.R., Miskin, M.Z., Jaeger, H.M.: Direct observation of particle interactions and clustering in charged granular streams. Nat. Phys. 11(9), 733 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • R. Yoshimatsu
    • 1
  • N. A. M. Araújo
    • 2
    • 3
  • T. Shinbrot
    • 4
  • H. J. Herrmann
    • 1
    • 5
  1. 1.Computational Physics for Engineering Materials, IfBETH ZurichZurichSwitzerland
  2. 2.Departamento de Física, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  3. 3.Centro de Física Teórica e ComputacionalUniversidade de LisboaLisbonPortugal
  4. 4.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  5. 5.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations