Granular Matter

, 20:30 | Cite as

A discrete element implementation for concrete: particle generation, contact calculations, packing under gravity and modeling material response

Original Paper
  • 72 Downloads

Abstract

A three-dimensional discrete element modelling capability for concrete based on rigid particles of arbitrary shape and size has been developed. The novel particle generation algorithm allows control of particle size, angularity and flakiness. General rigid body kinematics including finite rotations is accounted for, and an explicit time integration algorithm that conserves energy and momentum is implemented. An efficient contact algorithm with several features to increase the efficiency of the contact computations has been developed. This enables the gravity packing problem for arbitrary shaped particles to be solved in reasonable run time. The proposed procedure is used to generate assemblies of concrete specimens of various sizes that are homogeneous and isotropic in the bulk, and can capture the wall effect due to the formwork. The calibrated specimens are seen to be capable of accurately capturing experimentally observed macro stress strain response and failure patterns. The influence of aggregate shape on texture formation in the packed specimen, and on macro strength and failure patterns in hardened concrete, is demonstrated and is seen to be consistent with experimental results.

Keywords

Discrete element Concrete Polyhedral particles Angularity Flakiness 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Alexander, M.G., Mindess, S., Diamond, S., Qu, L.: Properties of paste–rock interfaces and their influence on composite behaviour. Mater. Struct. 9(28), 497–506 (1995)CrossRefGoogle Scholar
  2. 2.
    Asahina, D., Landis, E.N., Bolander, J.E.: Modeling of phase interfaces during pre-critical crack growth in concrete. Cement Concr. Compos. 33(9), 966–977 (2011)CrossRefGoogle Scholar
  3. 3.
    Azéma, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41(6), 729–741 (2009)CrossRefGoogle Scholar
  4. 4.
    Azéma, E., Radjai, F., Dubois, F.: Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E 87(6), 062203 (2013)CrossRefADSGoogle Scholar
  5. 5.
    Bachmann, H., et al.: Vibration problems in structures. Birkhäuser Basel, Berlin (1995)CrossRefGoogle Scholar
  6. 6.
    Beckmann, B., Schicktanz, K., Reischl, D., Curbach, M.: DEM simulation of concrete fracture and crack evolution. Struct. Concr. 13(4), 213–220 (2012)CrossRefGoogle Scholar
  7. 7.
    Bureau of Indian Standards. IS: 383-1970. Specification for Coarse and Fine Aggregates from Natural sources for Concrete, 2nd ednGoogle Scholar
  8. 8.
    Bolander, J.E., Saito, S.: Fracture analyses using spring networks with random geometry. Eng. Fract. Mech. 61(5–6), 569–591 (1998)CrossRefGoogle Scholar
  9. 9.
    Brown, N.J., Chen, J.F., Ooi, J.Y.: A bond model for DEM simulations of cementitious materials and deformable structures. Granul. Matter 16(3), 299–311 (2014)CrossRefGoogle Scholar
  10. 10.
    Camborde, F., Mariotti, C., Donze’, F.V.: Numerical study of rock and concrete behaviour by discrete element modelling. Comput. Geotech. 27(4), 225–247 (2000)CrossRefGoogle Scholar
  11. 11.
    Chang, S.W., Chen, C.S.: A non-iterative derivation of the common plane for contact detection of polyhedral blocks. Int. J. Numer. Methods Eng. 74(5), 734–753 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)CrossRefGoogle Scholar
  13. 13.
    Cui, L., O’sullivan, C., O’neill, S.: An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model. Geotechnique 57(10), 831–844 (2007)CrossRefGoogle Scholar
  14. 14.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  15. 15.
    Cundall, P.A.: Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)CrossRefGoogle Scholar
  16. 16.
    Cusatis, G., Pelessone, D., Mencarelli, A.: Lattice discrete particle model (LDPM) for failure behavior of concrete I: theory. Cement Concr. Compos. 33(9), 881–890 (2011)CrossRefGoogle Scholar
  17. 17.
    Cusatis, G., Mencarelli, A., Pelessone, D., Baylot, J.: Lattice discrete particle model (LDPM) for failure behavior of concrete II: calibration and validation. Cement Concr. Compos. 33(9), 891–905 (2011)CrossRefGoogle Scholar
  18. 18.
    d’Addetta, G.A., Kun, F., Ramm, E.: On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4(2), 77–90 (2002)CrossRefMATHGoogle Scholar
  19. 19.
    De Josselin, De Jong, G., Verruijt, A.: Etude photo-elastique d’un empilement de disques. Cah. Groupe Fr. Rheol. 2(1), 73–86 (1969)Google Scholar
  20. 20.
    Escoda, J., Jeulin, D., Willot, F., Toulemonde, C.: Three-dimensional morphological modelling of concrete using multiscale Poisson polyhedra. J. Microsc. 258(1), 31–48 (2015)CrossRefGoogle Scholar
  21. 21.
    Golub, G.H., Matt, U.V.: Quadratically constrained least squares and quadratic problems. Numer. Math. 59(1), 561–580 (1991)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gyurkó, Z., Bagi, K., Borosnyói, A.: Discreteelement modelling of uniaxial compression test of hardened concrete. J. Silic. Based Compos. Mater. 66(4), 113–119 (2014)Google Scholar
  23. 23.
    Hart, R., Cundall, P.A., Lemos, J.: Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 117–125 (1988)CrossRefGoogle Scholar
  24. 24.
    Hentz, S., Daudeville, L., Donzé, F.V.: Identification and validation of a discrete element model for concrete. J. Eng. Mech. 130(6), 709–719 (2004)CrossRefGoogle Scholar
  25. 25.
    Hordijk, D.A.: Local approach to fatigue of concrete. Ph.D Thesis, Delft University of Technology, Delft, The Netherlands (1991)Google Scholar
  26. 26.
    Huang, H.: Discrete element modeling of railroad ballast using imaging based aggregate morphology characterization. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL (2010)Google Scholar
  27. 27.
    Jensen, R.P., Edil, T.B., Bosscher, P.J., Plesha, M.E., Kahla, N.B.: Effect of particle shape on interface behavior of DEM-simulated granular materials. Int. J. Geomech. 1(1), 1–19 (2001)CrossRefGoogle Scholar
  28. 28.
    Jivkov, A.P., Yates, J.R.: Elastic behaviour of a regular lattice for meso-scale modelling of solids. Int. J. Solids Struct. 49(22), 3089–3099 (2012)CrossRefGoogle Scholar
  29. 29.
    Kaplan, M.F.: The effects of the properties of coarse aggregates on the workability of concrete. Mag. Concr. Res. 10(29), 63–74 (1958)CrossRefGoogle Scholar
  30. 30.
    Kim, Y., Souza, L.T.: Effects of aggregate angularity on mix design characteristics and pavement performance. Department of Civil Engineering, University of Nebraska-Lincoln, Technical report; MPM-10 (2009)Google Scholar
  31. 31.
    Kumar, C.N.S., Rao, T.D.: Fracture parameters of high strength concrete Mode II testing. Mag. Concr. Res. 62(3), 157–162 (2010)CrossRefGoogle Scholar
  32. 32.
    Lee, H., Kwon, J., Cho, H.: Simulation of impact breakage of concrete blocks using DGB. Geosyst. Eng. 10(2), 31–36 (2007)CrossRefGoogle Scholar
  33. 33.
    Liao, C.L., Chang, T.P., Young, D.H.: Stress–strain relationship for granular materials based on the hypothesis of best fit. Int. J. Solids Struct. 34(31–32), 4087–4100 (1997)CrossRefMATHGoogle Scholar
  34. 34.
    Liu, J.X., Deng, S.C., Zhang, J., Liang, N.G.: Lattice type of fracture model for concrete. Theoret. Appl. Fract. Mech. 48(3), 269–284 (2007)CrossRefGoogle Scholar
  35. 35.
    Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1–2), 69–80 (2007)Google Scholar
  36. 36.
    Man, H.K., van Mier, J.G.M.: Damage distribution and size effect in numerical concrete from lattice analyses. Cement Concr. Compos. 33(9), 867–880 (2011)CrossRefGoogle Scholar
  37. 37.
    Mechtcherine, V., Shyshko, S.: Simulating the behaviour of fresh concrete with the distinct element method-deriving model parameters related to the yield stress. Cement Concr. Compos. 55, 81–90 (2015)CrossRefGoogle Scholar
  38. 38.
    Meguro, K., Hakuno, M.: Fracture analyses of concrete structures by the modified distinct element method. Struct. Eng. Earthq. Eng. 6(2), 283–294 (1989)Google Scholar
  39. 39.
    Moukarzel, C., Herrmann, H.J.: A vectorizable random lattice. J. Stat. Phys. 68(5), 911–923 (1992)MathSciNetCrossRefMATHADSGoogle Scholar
  40. 40.
    Murdock, L.J.: The workability of concrete. Mag. Concr. Res. 12(36), 135–144 (1960)CrossRefGoogle Scholar
  41. 41.
    Muth, B., Of, G., Eberhard, P., Steinbach, O.: Collision detection for complicated polyhedra using the fast multipole method or ray crossing. Arch. Appl. Mech. 77(7), 503–521 (2007)CrossRefMATHADSGoogle Scholar
  42. 42.
    PFC 3D Version 5, Computer Software: General Purpose distinct element framework. 2014, Itasca Consulting Group, MinneapolisGoogle Scholar
  43. 43.
    Potyondy, D., Cundall, P.A., Lee, C.A.: Modelling rock using bonded assemblies of circular particles. In: Proceedings of the Second North American Rock Mechanics Symposium (1996); Montréal, 1937–1944Google Scholar
  44. 44.
    Quiroga, P.N., Fowler, D.W.: The effects of aggregates characteristics on the performance of the Portland cement concrete. Report ICAR 104–1F 2003, University of Texas, Austin, TexasGoogle Scholar
  45. 45.
    Rao, G.A., Prasad, B.K.R.: Influence of interface properties on fracture behavior of concrete. Sadhana 36(2), 193–208 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Reinhardt, H.W., Xu, S.: A practical testing approach to determine mode II fracture energy GIIF for concrete. Int. J. Fract. 105(2), 107–125 (2000)CrossRefGoogle Scholar
  47. 47.
    Rocco, C.J., Elices, M.: Effect of aggregate shape on the mechanical properties of a simple concrete. Eng. Fract. Mech. 76, 286–298 (2009)CrossRefGoogle Scholar
  48. 48.
    Rycroft, C.H.: VORO++: a 3D Voronoi cell library in C++. Chaos 19, 041111 (2009)CrossRefADSGoogle Scholar
  49. 49.
    Schlangen, E., Garboczi, E.J.: Fracture simulations of concrete using lattice models: computational aspects. Eng. Fract. Mech. 57(2/3), 319–332 (1997)CrossRefGoogle Scholar
  50. 50.
    Schlangen, E., van Mier, J.G.M.: Experimental and numerical analysis of micro mechanisms of fracture of cement-based composites. Cement Concr. Compos. 14(2), 105–118 (1992)CrossRefGoogle Scholar
  51. 51.
    Sherif, H.A., Kossa, S.S.: Relationship between normal and tangential contact stiffness of nominally flat surface. Wear 151, 49–62 (1991)CrossRefGoogle Scholar
  52. 52.
    Shiu, W.J., Donzé, F., Daudeville, L.: Influence of the reinforcement on penetration and perforation of concrete targets: a discrete element analysis. Eng. Comput. 26(1–2), 29–45 (2009)CrossRefMATHGoogle Scholar
  53. 53.
    Shyshko, S., Mechtcherine, V.: Developing a discrete element model for simulating fresh concrete: experimental investigation and modelling of interactions between discrete aggregate particles with fine mortar between them. Constr. Build. Mater. 47, 601–615 (2013)CrossRefGoogle Scholar
  54. 54.
    Simo, J.C., Wong, K.K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int. J. Numer. Methods Eng. 31(1), 19–52 (1991)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Smeets, B., Odenthal, T., Vanmaercke, S., Ramon, H.: Polygon-based contact description for modeling arbitrary polyhedra in the discrete element method. Comput. Methods Appl. Mech. Eng. 290, 277–289 (2015)MathSciNetCrossRefADSGoogle Scholar
  56. 56.
    Su, R.K., Bei, C.: The effect of coarse aggregate size on the stress–strain curves of concrete under uniaxial compression. Hong Kong Inst. Eng. Trans. 15(3), 33–39 (2008)Google Scholar
  57. 57.
    Tavarez, F.A., Plesha, M.E.: Discrete Element method for modelling solid and particulate materials. Int. J. Numer. Methods Eng. 70(4), 379–404 (2007)CrossRefMATHGoogle Scholar
  58. 58.
    Tran, V.T., Donzé, F.V., Marin, P.: A discrete element model of concrete under high triaxial loading. Cement Concr. Compos. 33(9), 936–948 (2011)CrossRefGoogle Scholar
  59. 59.
    Tran, V.D., Uji, K., Ueno, U., Ohno, K., Wang, B.: Evaluation of shear bond test methods of concrete repair. In: Dehn et al.(ed.) Concrete Repair, Rehabilitation and Retrofitting IV. Taylor & Francis Group, London (2016)Google Scholar
  60. 60.
    van Mier, J.G.M. et al.: Strain softening in concrete in uniaxial compression. Materials and Structures (1997); RILEM 148-SSC, 30, 195–209Google Scholar
  61. 61.
    van Mier, J.G.M., van Vliet, M.R., Wang, T.K.: Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mech. Mater. 34(11), 705–724 (2002)CrossRefGoogle Scholar
  62. 62.
    Van Vliet, M.R.A., van Mier, J.G.M.: Softening behavior of concrete under uniaxial compression. In: Wittmann, F.H. (ed.)Proceedings FracMCos-2: Fracture Mechanics of Concrete Structures. AEDIFICATIO Publishers, Freiburg (1995)Google Scholar
  63. 63.
    Van Vliet, M.R.A., van Mier, J.G.M.: Experimental investigation of size effect in concrete and sandstone under uniaxial tension. Eng. Fract. Mech. 65(2–3), 165–188 (2000)CrossRefGoogle Scholar
  64. 64.
    Walton, O.R.: Simulation of gravity flow and packing of spheres. In: Proceedings of the Nisshin Engineering Powder Technology International Seminar (NEPTIS-1), Osaka, Japan (1993)Google Scholar
  65. 65.
    Wischers, G., Lusche, M.: Influence of internal stress distribution on the behaviour of normal weight and light weight concrete in compression. Beton-technische Berichte 8(22), 343–347 (1972)Google Scholar
  66. 66.
    Xu, R., Yang, X.H., Yin, A.Y., Yang, S.F., Ye, Y.: A three-dimensional aggregate generation and packing algorithm for modeling asphalt mixture with graded aggregates. J. Mech. 26(2), 165–171 (2010)CrossRefGoogle Scholar
  67. 67.
    Yang, W., Zhou, Z., Pinson, D., Yu, A.: Periodic boundary conditions for discrete element method simulation of particle flow in cylindrical vessels. Ind. Eng. Chem. Res. 53(19), 8245–8256 (2014)CrossRefGoogle Scholar
  68. 68.
    Zhang, D., Huang, X., Zhao, Y.: Algorithms for generating three-dimensional aggregates and asphalt mixture samples by the discrete-element method. J. Comput. Civil Eng. 27(2), 111–117 (2013)CrossRefGoogle Scholar
  69. 69.
    Zhang, M., Morrison, C.N., Jivkov, A.P.: A meso-scale site bond model for elasticity: theory and calibration. Mater. Res. Innov. 18(S2), 982–986 (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations