# A semi-analytical model for the effective thermal conductivity of a multi-component polydisperse granular bed

## Abstract

A theoretical model to predict the effective thermal conductivity of a multi-component polydisperse granular bed is presented. A simple energy balance analysis is used to arrive at an approximate analytical expression for the effective thermal conductivity. Simulation of heat transfer in a granular bed is carried out using an open source Discrete Element Method (DEM) package called LIGGGHTS. The derived analytical expressions for the effective thermal conductivity compares well with the results obtained from DEM simulations for granular beds comprising of different components with different sizes.

## Keywords

Packed granular bed Thermal conductivity Discrete element method Heat transfer## Notes

### Compliance with ethical standards

### Conflict of interest

The authors declare that they have no conflict of interest.

## References

- 1.Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique
**29**, 47–65 (1979)CrossRefGoogle Scholar - 2.Zehner, P., Schlunder, E.U.: Thermal conductivity of granular materials at moderate temperatures. Chemie Ingr. Tech.
**42**, 933–941 (1970)CrossRefGoogle Scholar - 3.Meredith, R.E., Tobias, C.W.: Resistance to potential flow through a cubical array of spheres. J. Appl. Phys.
**31**, 1270–1273 (1960)ADSCrossRefGoogle Scholar - 4.Cheng, P., Hsu, C.-T.: The effective stagnant thermal conductivity of porous media with periodic structures. J. Porous Media
**2**, 19–38 (1999)CrossRefzbMATHGoogle Scholar - 5.Bahrami, M., Yovanovich, M.M., Culham, J.R.: Effective thermal conductivity of rough spherical packed beds. Int. J. Heat Mass Transf.
**49**, 3691–3701 (2006)CrossRefzbMATHGoogle Scholar - 6.Raffray, A.R., Gorbis, Z., Badawi, A., Tillack, M.S., Ying, A.Y., Abdou, M.A.: Model for determining the effective thermal conductivity of particle beds with high solid-to-gas thermal conductivity ratio. In: Proceedings, IEEE Thirteenth Symposium on Fusion Engineering (1989)Google Scholar
- 7.Bonnecaze, R.T., Brady, J.F.: The effective conductivity of random suspensions of spherical particles. Proc. R. Soc. Lond. A
**432**, 445–465 (1991)ADSCrossRefGoogle Scholar - 8.Batchelor, G.K., O’Brien, R.W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. A Math. Phys. Eng. Sci.
**355**, 313–333 (1977)ADSCrossRefGoogle Scholar - 9.van Antwerpen, W., du Toit, C.G., Rousseau, P.G.: A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nucl. Eng. Des.
**240**, 1803–1818 (2010)CrossRefGoogle Scholar - 10.Bauer, R., Schlunder, E.U.: Effective radial thermal conductivity of packings in gas flow, part ii: thermal conductivity of the packing fraction without gas flow. Int. Chem. Eng.
**18**, 18–204 (1978)Google Scholar - 11.Gupta, M., Yang, J., Roy, C.: Modelling the effective thermal conductivity in polydispersed bed systems: a unified approach using the linear packing theory and unit cell model. Can. J. Chem. Eng.
**80**, 830–839 (2002)CrossRefGoogle Scholar - 12.Kovalev, O.B., Gusarov, A.V.: Modeling of granular packed beds, their statistical analyses and evaluation of effective thermal conductivity. Int. J. Therm. Sci.
**114**, 327–341 (2017)CrossRefGoogle Scholar - 13.Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Int. J.
**12**, 140–152 (2012)CrossRefMathSciNetGoogle Scholar - 14.Stukowski, A.: Visualization and analysis of atomistic simulation data with ovito—the open visualization tool. Model. Simul. Mater. Sci. Eng.
**18**, 015012 (2010)ADSCrossRefGoogle Scholar - 15.Lamb, H.: Hydrodynamics, 4th edn. Cambridge University Press, Cambridge (1916)zbMATHGoogle Scholar

## Copyright information

© Springer-Verlag GmbH Germany 2017