Advertisement

Rectification effect on solitary waves in the symmetric Y-shaped granular chain

  • 178 Accesses

  • 1 Citations

Abstract

The rectification effect on the propagation of solitary waves in the symmetric Y-shaped granular chain is numerically investigated. A heterojunction with mass mismatch occurs at the position of Y-junction by adjusting the branch angle. And the heavy-light heterojunction is more favorable for the solitary wave passing. Based on the characteristics of wave propagation velocity and gap’s opening, we argue that both nonlinearity and collision effects dominate the rectification process. The rectification efficiency can be improved by adjusting the branch angle and the direction of incident solitary wave. The results have particularly practical significance for the potential design of acoustic diode devices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Tongay, S., Lemaitre, M., Miao, X., Gila, B., Appleton, B.R., Hebard, A.F.: Rectification at graphene-semiconductor interfaces zero-gap semiconductor-based diodes. Phys. Rev. X 2, 011002 (2012)

  2. 2.

    Zietek, A., Ogrodnik, P., Skowroński, W., Sobiecki, F., Van Dijken, S., Stobiecki, T.: Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures. Appl. Phys. Lett. 109, 072406 (2012)

  3. 3.

    Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)

  4. 4.

    Zhu, X.F., Liang, B., Kan, W.W., Zou, X.X., Cheng, J.C.: Acoustic cloaking by a superlens with single-negative materials. Phys. Rev. Lett. 106, 014301 (2011)

  5. 5.

    Breindel, A., Sun, D., Sen, S.: Impulse absorption using small, hard panels of embedded cylinders with granular alignments. Appl. Phys. Lett. 99, 063510 (2011)

  6. 6.

    Ma, L., Huang, D.C., Chen, W.Z., Jiao, T.F., Sun, M., Hu, F.L., Su, J.Y.: Oscillating collision of the granular chain on static wall. Phys. Lett. A 381, 542 (2017)

  7. 7.

    Przedborski, M.A., Sen, S.: Localizing energy in granular materials. Appl. Phys. Lett. 107, 244105 (2015)

  8. 8.

    Nesterenko, V.F., Daraio, C., Herbold, E.B., Jin, S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702 (2005)

  9. 9.

    Vergara, L.: Scattering of solitary waves from interfaces in granular media. Phys. Rev. Lett. 95, 108002 (2005)

  10. 10.

    Li, F., Anzel, P., Yang, J., Kevrekidis, P.G., Daraio, C.: Granular acoustic switches and logic elements. Nat. Commun. 5, 5311 (2014)

  11. 11.

    Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett 96, 058002 (2006)

  12. 12.

    Kim, E., Restuccia, F., Yang, J., Daraio, C.: Solitary wave-based delamination detection in composite plates using a combined granular crystal sensor and actuator. Smart Mater. Struct. 24, 125004 (2015)

  13. 13.

    Hasan, M.A., Nemat-Nasser, S.: Universal relations for solitary waves in granular crystals under shocks with finite rise and decay times. Phys. Rev. E. 93, 042905 (2016)

  14. 14.

    Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733 (1984)

  15. 15.

    Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

  16. 16.

    Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)

  17. 17.

    Lazaridi, A.N., Nesterenko, V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26, 405 (1985)

  18. 18.

    Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104 (1997)

  19. 19.

    Sen, S., Manciu, M.: Solitary wave dynamics in generalized Hertz chains an improved solution of the equation of motion. Phys. Rev. E 64, 056605 (2001)

  20. 20.

    Rosas, A., Lindenberg, K.: Pulse velocity in a granular chain. Phys. Rev. E 69, 037601 (2004)

  21. 21.

    Boechler, N., Theocharis, G., Daraio, C.: Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665 (2011)

  22. 22.

    Nesterenko, V.F., Lazaridi, A.N., Sibiryakov, E.B.: The decay of soliton at the contact of two “acoustic vacuums”. J. Appl. Mech. Tech. Phys. 36, 166 (1995)

  23. 23.

    Lawney, B.P., Luding, S.: Frequency filtering in disordered granular chains. Acta Mech. 225, 2385 (2014)

  24. 24.

    Vainchtein, A., Starosvetsky, Y., Wright, J.D., Perline, R.: Solitary waves in diatomic chains. Phys. Rev. E 93, 042210 (2016)

  25. 25.

    Doney, R., Sen, S.: Decorated, tapered, and highly nonlinear granular chain. Phys. Rev. Lett. 97, 155502 (2006)

  26. 26.

    Manjunath, M., Awasthi, A.P., Geubelle, P.H.: Wave propagation in random granular chains. Phys. Rev. E 85, 031308 (2012)

  27. 27.

    Mouraille, O., Luding, S.: Sound wave propagation in weakly polydisperse granular materials. Ultrasonics 48, 498 (2008)

  28. 28.

    Zhang, Y., Hasan, M.A., Starosvetsky, Y., McFarland, D.M., Vakakis, A.F.: Nonlinear mixed solitary-shear waves and pulse equi-partition in a granular network. Phys. D. 291, 45 (2015)

  29. 29.

    Shrivastava, R.K., Luding, S.: Effect of disorder on bulk sound wave speed: a multiscale spectral analysis. NPGD 10, 5194 (2017)

  30. 30.

    Falls, W.J., Sen, S.: Solitary wave propagation through two-dimensional treelike structures. Phys. Rev. E 89, 023209 (2014)

  31. 31.

    Spadoni, A., Daraio, C.: Generation and control of sound bullets. Proc. Natl Acad. Sci. USA 107, 7230 (2014)

  32. 32.

    Daraio, C., Ng, D., Nesterenko, V.F., Fraternali, F.: Highly nonlinear pulse splitting and recombination in a two dimensional granular network. Phys. Rev. E 82, 036603 (2010)

  33. 33.

    Ngo, D., Fraternali, F., Daraio, C.: Highly nonlinear solitary wave propagation in Y-shaped granular crystals with variable branch angles. Phys. Rev. E 85, 036602 (2012)

  34. 34.

    Leonard, A., Ponson, L., Daraio, C.: Wave mitigation in ordered networks of granular chains. J. Mech. Phys. Solids 73, 103 (2014)

  35. 35.

    Huang, D.C., Sun, G., Lu, K.Q.: Relationship between the flow rate and the packing fraction in the choke area of the two-dimensional granular flow. Phys. Rev. E 74, 061306 (2006)

  36. 36.

    Huang, D.C., Lu, M., Sen, S., Sun, M., Feng, Y.D., Yang, A.N.: Spin Brazil-nut effect and its reverse in a rotating double-walled drum. Eur. Phys. J. E 36, 41 (2013)

  37. 37.

    Kuwabara, G., Kono, K.: Restitution coefficient in a collision between two spheres. Japn. J. Appl. Phys. 26, 1230 (1987)

  38. 38.

    Schäfer, J., Dippel, S., Wolf, D.E.: Force schemes in simulations of granular materials. J. Phys. I 6, 5 (1996)

  39. 39.

    Herbold, E.B., Nesterenko, V.F.: Solitary and shock waves in discrete strongly nonlinear double power-law materials. Appl. Phys. Lett. 90, 261902 (2007)

  40. 40.

    Job, S., Melo, F., Sokolow, A., Sen, S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94, 178002 (2005)

  41. 41.

    Tichler, A.M., Gómez, L.R., Upadhyaya, N., Campman, X., Nesterenko, V.F., Vitelli, V.: Transmission and reflection of strongly nonlinear solitary waves at granular interfaces. Phys. Rev. Lett. 111, 048001 (2013)

  42. 42.

    Sokolow, A., Bittle, E.G., Sen, S.: Solitary wave train formation in Hertzian chains. Europhys. Lett. 77, 24002 (2007)

  43. 43.

    Job, S., Melo, F., Sokolow, A., Sen, S.: Solitary wave trains in granular chains. Granul. Matt. 10, 13 (2007)

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 11574153, 21574066, 11574150, 11334005, 11572178, 91634202) and Jiangsu Province Postdoctoral Science Foundation (Grant No. 1402007C).

Author information

Correspondence to Decai Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 5353 KB)

Supplementary material 2 (wmv 4982 KB)

Supplementary material 1 (wmv 5353 KB)

Supplementary material 2 (wmv 4982 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Jiao, T., Ma, L. et al. Rectification effect on solitary waves in the symmetric Y-shaped granular chain. Granular Matter 19, 55 (2017). https://doi.org/10.1007/s10035-017-0739-0

Download citation

Keywords

  • Granular materials
  • Acoustic diode
  • Solitary wave
  • Discrete element method