Advertisement

Granular Matter

, 19:4 | Cite as

Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction

  • Rodaina Aboul HosnEmail author
  • Luc Sibille
  • Nadia Benahmed
  • Bruno Chareyre
Original Paper

Abstract

Discrete numerical simulations were carried out to reproduce experimental results obtained on loose cohesionless soil samples subjected to triaxial tests. Periodic boundary conditions were adopted and 3D spherical discrete elements were chosen. However, to overcome excessive rolling of such an oversimplified particle’s shape, contact rolling resistance was taken into consideration. The influence of both the elastic and the plastic local parameters is discussed. It is shown that the plastic macroscopic behavior of the granular assembly depends only on the plastic parameters at the microscopic scale, and mainly on the plastic rolling moment reflecting the particle’s shape. Moreover, a procedure to obtain an initial density, ranging from loose to dense samples, is proposed by adding adhesion at contacts during the preparation phase. Finally, a calibration procedure is proposed to reproduce experimental results and the limitations of the model are discussed.

Keywords

Discrete element method Rolling friction Calibration Compaction technique 

Notes

Acknowledgements

The environment and support provided by the French research group GDR MeGe 3176 is gratefully acknowledged.

Laboratory 3SR is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030).

References

  1. 1.
    Bardet, J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18(2), 159–182 (1994)CrossRefGoogle Scholar
  2. 2.
    Benahmed, N., Nguyen, T.K., Hicher, P.Y., Nicolas, M.: An experimental investigation into the effects of low plastic fines content on the behaviour of sand/silt mixtures. Eur. J. Environ. Civil Eng. 19(1), 109–128 (2015)CrossRefGoogle Scholar
  3. 3.
    Brauer, A., Mewborn, A.C.: The greatest distance between two characteristic roots of a matrix. Duke Math. J. 26(4), 653–661 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Calvetti, F., Viggiani, G., Tamagnini, C.: A numerical investigation of the incremental behavior of granular soils. Riv. Ital. Geotech. 3, 11–29 (2003)Google Scholar
  5. 5.
    Chareyre, B., Briançon, L., Villard, P.: Theoretical versus experimental modeling of the anchorage capacity of geotextiles in trenches. Geosynth. Int. 9(2), 97–123 (2002)CrossRefGoogle Scholar
  6. 6.
    Chareyre, B., Villard, P.: Dynamic spar elements and discrete element methods in two dimensions for the modeling of soil-inclusion problems. J. Eng. Mech. 131(7), 689–698 (2005)CrossRefGoogle Scholar
  7. 7.
    Combe, G.: Origines géométrique du comportement quasi-statique des assemblages granulaires denses: étude par simulations numériques. PhD thesis, Ecole nationale des ponts et chaussées (2001)Google Scholar
  8. 8.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  9. 9.
    da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Estrada, N., Azéma, E., Radjaï, F., Taboada, A.: Comparison of the effects of rolling resistance and angularity in sheared granular media. Powder Grains hal–00842799, 891–894 (2013)Google Scholar
  11. 11.
    Gilabert, F., Roux, J.-N., Castellanos, A.: Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states. Phys. Rev. E 75, 011303 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hart, R., Cundall, P.A., Lemos, J.: Formulation of a three-dimensional distinct element model-part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 117–125 (1988)CrossRefGoogle Scholar
  13. 13.
    Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, C.K.: Exploring the influence of interparticle friction on critical state behavior using DEM. Int. J. Numer. Anal. Meth. Geomech. 38(12), 1276–1297 (2014)CrossRefGoogle Scholar
  14. 14.
    Itasca Consulting Group. PFC3D Theory and Background Manual, version 3.0. Itasca Consulting Group, Monneapolis, Minnesota, USA (2003)Google Scholar
  15. 15.
    Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109(1–3), 192–205 (2000)CrossRefGoogle Scholar
  16. 16.
    Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)CrossRefGoogle Scholar
  17. 17.
    Kozicki, J., Tejchman, J.: Numerical simulations of sand behaviour using DEM with two different descriptions of grain roughness. In: II International Conference on Particle-Based Methods—Fundamentals and Applications, Particles (2011)Google Scholar
  18. 18.
    Kozicki, J., Tejchman, J., Leśniewska, D.: Study of some micro-structural phenomena in granular shear zones. In: AIP Conference Proceeding of Powder and Grains, vol. 1542 (2013)Google Scholar
  19. 19.
    Lee, S.J., Hashash, Y.M.A., Nezami, E.G.: Simulation of triaxial compression tests with polyhedral discrete elements. Comput. Geotech. 43, 92–100 (2012)CrossRefGoogle Scholar
  20. 20.
    Nguyen, T.K.: Etude expérimentale du comportement instable d’un sable silteux: application aux digues de protection. PhD thesis, Université d’Aix-Marseille (2014)Google Scholar
  21. 21.
    Oda, M., Iwashita, K.: Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38(15), 1713–1740 (2000)CrossRefGoogle Scholar
  22. 22.
    Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mech. Mater. 1(4), 269–283 (1982)CrossRefGoogle Scholar
  23. 23.
    Plassiard, J.-P., Belheine, N., Donzé, F.-V.: A spherical discrete element model: calibration procedure and incremental response. Granul. Matter 11(5), 293–306 (2009)Google Scholar
  24. 24.
    Radjaï, F., Dubois, F.: Discrete-Element Modeling of Granular Materials. ISTE/Wiley, London (2011)Google Scholar
  25. 25.
    Roux, J.-N., Chevoir, F.: Discrete numerical simulation and the mechanical behavior of granular materials. Bulletin des laboratoires des ponts et chaussées 254, 109–138 (2005)Google Scholar
  26. 26.
    Roux, J-N., Combe, G.: How granular materials deform in quasistatic conditions. In: IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flow. AIP Publishing, vol. 1227(1), pp. 260–270, (2010)Google Scholar
  27. 27.
    Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul. Matter 11(4), 221–236 (2009)CrossRefzbMATHGoogle Scholar
  28. 28.
    Scholtés, L., Chareyre, B., Nicot, F., Darve, F.: Micromechanics of granular materials with capillary effects. Int. J. Eng. Sci. 47(11–12), 1460–1471 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Suhr, B., Six, K.: On the effect of stress dependent interparticle friction in direct shear tests. Powder Technol. 294, 211–220 (2016)CrossRefGoogle Scholar
  30. 30.
    Szarf, K., Combe, G., Villard, P.: Polygons vs. clumps of discs: a numerical study of the influence of grain shape on the mechanical behaviour of granular materials. Powder Technol. 208(2), 279–288 (2011)CrossRefGoogle Scholar
  31. 31.
    Šmilauer, V., et al.: Yade Documentation, 2nd edn. The Yade Project (2015). http://yade-dem.org/doc/
  32. 32.
    Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)CrossRefGoogle Scholar
  33. 33.
    Ting, J.M., Corkum, B.T., Kauffman, C.R., Greco, C.: Discrete numerical model for soil mechanics. J. Geotech. Eng. 115(3), 379–398 (1989)CrossRefGoogle Scholar
  34. 34.
    Tong, A.-T., Catalano, E., Chareyre, B.: Pore-scale flow simulations: model predictions compared with experiments on bi-dispersed granular assemblies. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 67(5), 743–752 (2012)CrossRefGoogle Scholar
  35. 35.
    Wang, X., Li, J.: Simulation of triaxial response of granular materials by modified DEM. Sci. China Phys. Mech. Astron. 57(12), 2297–2308 (2014)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Widuliński, L., Kozicki, J., Tejchman, J.: Numerical simulations of triaxial test with sand using DEM. Arch. Hydro Eng. Environ. Mech. 56(3–4), 149–171 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rodaina Aboul Hosn
    • 1
    • 2
    Email author
  • Luc Sibille
    • 1
    • 2
  • Nadia Benahmed
    • 3
  • Bruno Chareyre
    • 1
    • 2
  1. 1.3SRUniversity Grenoble AlpesGrenobleFrance
  2. 2.3SRCNRSGrenobleFrance
  3. 3.Research Unit RecoverIRSTEAAix-en-Provence Cedex 5France

Personalised recommendations