Advertisement

Granular Matter

, 18:85 | Cite as

Friction and pressure-dependence of force chain communities in granular materials

  • Yuming Huang
  • Karen E. Daniels
Original Paper

Abstract

Granular materials transmit stress via a network of force chains. Despite the importance of these chains in characterizing the stress state and dynamics of the system, there is no common framework for quantifying their properties. Recently, attention has turned to the tools of network science as a promising route to such a description. In this paper, we apply a common network-science technique, community detection, to the force network of numerically-generated packings of spheres over a range of interparticle friction coefficients and confining pressures. In order to extract chain-like features, we use a modularity maximization with a recently-developed geographical null model (Bassett et al. in Soft Matter 11:2731–2744, 2015), and optimize the technique to detect sparse structures by minimizing the normalized convex hull ratio of the detected communities. We characterize the force chain communities by their size (number of particles), network force (interparticle forces), and normalized convex hull ratio (sparseness). We find that the first two are highly correlated and are therefore largely redundant. For both pressure P and interparticle friction \(\mu \), we observe two distinct transitions in behavior. One, for \(\mu \lesssim 0.1\) the packings exhibit more distinguishability to pressure than at higher \(\mu \). Two, we identify a transition pressure \(P^*\) at which the frictional dependence switches behaviors. Below \(P^*\) there are more large/strong communities at low \(\mu \), while above \(P^*\) there are more large/strong communities at high \(\mu \). We explain these phenomena by comparison to the spatial distribution of communities along the vertical axis of the system. These results provide new tools for considering the mesoscale structure of a granular system and pave the way for reduced descriptions based on the force chain structure.

Keywords

Force chains Network community structure Numerical simulations Friction Pressure 

Notes

Acknowledgments

We are grateful for support from the National Science Foundation (DMR-1206808) and the James S. McDonnell Foundation. The simulations were performed at the NC State High Performance Computing Center. We are grateful to Leo Silbert, Danielle Bassett, and Mason Porter for valuable conversations.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bassett, D.S., Owens, E.T., Porter, M.A., Manning, M.L., Daniels, K.E.: Extraction of force-chain network architecture in granular materials using community detection. Soft Matter 11, 2731–2744 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Dantu, P.: Contribution l’étude méchanique et géométrique des milieux pulvérulents. In: Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, London, pp 144–148 (1957)Google Scholar
  3. 3.
    Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269, 513–5 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2D granular couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Newman, M.E.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefMATHGoogle Scholar
  6. 6.
    Arévalo, R., Zuriguel, I., Maza, D.: Topology of the force network in the jamming transition of an isotropically compressed granular packing. Phys. Rev. E 81, 041302 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Walker, D.M., Tordesillas, A.: Topological evolution in dense granular materials: a complex networks perspective. Int. J. Solids Struct. 47, 624–639 (2010)CrossRefMATHGoogle Scholar
  8. 8.
    Walker, D., Tordesillas, A.: Taxonomy of granular rheology from grain property networks. Phys. Rev. E 85, 011304 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Bassett, D.S., Owens, E.T., Daniels, K.E., Porter, M.A.: Influence of network topology on sound propagation in granular materials. Phys. Rev. E 86, 041306 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Peters, J., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041307 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, L., Wu, J.-Q., Zhang, J.: Force-chain identification in quasi-2D granular systems. In: AIP Conference Proceedings, Powders and Grains, pp. 397–400 (2013)Google Scholar
  12. 12.
    Kondic, L., Goullet, A., O’Hern, C.S., Kramar, M., Mischaikow, K., Behringer, R.P.: Topology of force networks in compressed granular media. Europhys. Lett. 97, 54001 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Kaczynski, T., Mischaikow, K.M., Mrozek, M.: Computational Homology. Springer, New York (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Radjai, F., Wolf, D., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Not. Am. Math. Soc. 56, 1082 (2009)MathSciNetMATHGoogle Scholar
  16. 16.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 103 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Navakas, R., Džiugys, A., Peters, B.: Application of graph community detection algorithms for identification of force clusters in squeezed granular packs. Modern Build. Mater. Struct. Tech. 1–4 (2010)Google Scholar
  18. 18.
    Navakas, R., Džiugys, A., Peters, B.: A community-detection based approach to identification of inhomogeneities in granular matter. Phys. A Stat. Mech. Appl. 407, 312–331 (2014)CrossRefGoogle Scholar
  19. 19.
    Owens, E.T., Daniels, K.E.: Sound propagation and force chains in granular materials. Europhys. Lett. 94, 54005 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Herrera, M., McCarthy, S., Slotterback, S., Cephas, E., Losert, W., Girvan, M.: Path to fracture in granular flows: dynamics of contact networks. Phys. Rev. E 83, 061303 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Mukhopadhyay, S., Peixinho, J.: Packings of deformable spheres. Phys. Rev. E 84, 011302 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Saadatfar, M., Sheppard, A.P., Senden, T.J., Kabla, A.J.: Mapping forces in a 3D elastic assembly of grains. J. Mech. Phys. Solids 60, 55–66 (2012)ADSCrossRefMATHGoogle Scholar
  23. 23.
    Brodu, N., Dijksman, J.A., Behringer, R.P.: Spanning the scales of granular materials through microscopic force imaging. Nat. Commun. 6, 6361 (2015)ADSCrossRefGoogle Scholar
  24. 24.
  25. 25.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)ADSCrossRefMATHGoogle Scholar
  26. 26.
    Chen, Y., Best, A., Butt, H.-J., Boehler, R., Haschke, T., Wiechert, W.: Pressure distribution in a mechanical microcontact. Appl. Phys. Lett. 88, 20–23 (2006)Google Scholar
  27. 27.
    Silbert, L., Ertas, D., Grest, G., Halsey, T., Levine, D.: Geometry of frictionless and frictional sphere packings. Phys. Rev. E 65, 031304 (2002)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Blumenfeld, R., Edwards, S.F., Ball, R.C.: Granular matter and the marginal rigidity state. J. Phys. Condens. Matter 17, 11 (2005)CrossRefGoogle Scholar
  29. 29.
    Owens, E.T., Daniels, K.E.: Acoustic measurement of a granular density of modes. Soft Matter 9, 1214–1219 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Jutla, I.S., Jeub, L.G.S., Mucha, P.J.: A generalized Louvain method for community detection implemented in MATLAB. http://netwiki.amath.unc.edu/GenLouvain
  31. 31.
    Newman, M.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Silbert, L.E.: Jamming of frictional spheres and random loose packing. Soft Matter 6, 2918 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Makse, H.A., Johnson, D.L., Schwartz, L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160–4163 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Zhang, H.P., Makse, H.A.: Jamming transition in emulsions and granular materials. Phys. Rev. E 72, 11301 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)Google Scholar
  36. 36.
    Janssen, H.A.: Versuche über Getreidedruck in Silozellen. Zeitschr. d. Vereines deutscher Ingenieure 39, 1045–1049 (1895)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations