Granular Matter

, 18:75 | Cite as

Tensile stress relaxation in unsaturated granular materials

  • Filippo Bianchi
  • Marcel Thielmann
  • Roman Mani
  • Dani Or
  • Hans Jürgen Herrmann
Original Paper


The mechanics of granular media at low liquid saturation levels remain poorly understood. Macroscopic mechanical properties are affected by microscale forces and processes, such as capillary forces, inter-particle friction, liquid flows, and particle movements. An improved understanding of these microscale mechanisms is important for a range of industrial applications and natural phenomena (e.g. landslides). This study focuses on the transient evolution of the tensile stress of unsaturated granular media under extension. Experimental results suggest that the stress state of the material evolves even after cessation of sample extension. Moreover, we observe that the packing density strongly affects the efficiency of different processes that result in tensile stress relaxation. By comparing the observed relaxation time scales with published data, we conclude that tensile stress relaxation is governed by particle rearrangement and fluid redistribution. An increased packing density inhibits particle rearrangement and only leaves fluid redistribution as the major process that governs tensile stress relaxation.


Tensile stress Capillary forces Capillary bridges Fluid redistribution Grain rearrangement Granular material 



We acknowledge financial support from the European Research Council (ERC) Advanced Grant Nos. 319968 FlowCCS. The technical assistance of Daniel Breitenstein in constructing the experimental apparatus is greatly appreciated.


  1. 1.
    Carr, J.F.: Tensile strength of granular materials. Nature 213(5081), 1158–1159 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    Fisher, R.A.: On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J. Agric. Sci. 16, 492–505 (1926)CrossRefGoogle Scholar
  3. 3.
    François, D., Pineau, A., Zaoui, A.: Mechanical Behaviour of Materials. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    German, R.M.: Coordination number changes during powder densification. Powder Technol. 253, 368–376 (2014)CrossRefGoogle Scholar
  5. 5.
    Haines, W.B.: Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil. J. Agric. Sci. 15, 529–535 (1925)CrossRefGoogle Scholar
  6. 6.
    Hartley, R.R., Behringer, R.P.: Logarithmic rate dependence of force networks in sheared granular materials. Nature 421(6926), 928–931 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Herminghaus, S.: Dynamics of wet granular matter. Adv. Phys. 54(3), 221–261 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Hornbaker, D.J., Albert, R., Albert, I., Barabási, A.L., Schiffer, P.: What keeps sandcastles standing? Nature 387, 765 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Iveson, S.M., Litster, J.D., Hapgood, K., Ennis, B.J.: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117(12), 3–39 (2001)CrossRefGoogle Scholar
  10. 10.
    Kim, T.H., Hwang, C.: Modeling of tensile strength on moist granular earth material at low water content. Eng. Geol. 69(34), 233–244 (2003)CrossRefGoogle Scholar
  11. 11.
    Kohonen, M.M., Geromichalos, D., Scheel, M., Schier, C., Herminghaus, S.: On capillary bridges in wet granular materials. Phys. A Stat. Mech. Appl. 339(12), 7–15 (2004)CrossRefGoogle Scholar
  12. 12.
    Kohonen, M.M., Maeda, N., Christenson, H.K.: Kinetics of capillary condensation in a nanoscale pore. Phys. Rev. Lett. 82, 4667–4670 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Kristensen, H., Holm, P., Schaefer, T.: Mechanical properties of moist agglomerates in relation to granulation mechanisms part II. Effects of particle size distribution. Powder Technol. 44(3), 239–247 (1985)CrossRefGoogle Scholar
  14. 14.
    Labajos-Broncano, L., Antequera-Barroso, J., González-Martín, M., Bruque, J.: An experimental study about the imbibition of aqueous solutions of low concentration of a non-adsorbable surfactant in a hydrophilic porous medium. J. Colloid Interface Sci. 301(1), 323–328 (2006)Google Scholar
  15. 15.
    Lambert, P., Chau, A., Delchambre, A., Régnier, S.: Comparison between two capillary forces models. Langmuir 24(7), 3157–3163 (2008)CrossRefGoogle Scholar
  16. 16.
    Lian, G., Seville, J.: The capillary bridge between two spheres: new closed-form equations in a two century old problem. Adv. Colloid Interface Sci. 227, 53–62 (2016)CrossRefGoogle Scholar
  17. 17.
    Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161(1), 138–147 (1993)CrossRefGoogle Scholar
  18. 18.
    Lu, N., Wu, B., Tan, C.: Tensile strength characteristics of unsaturated sands. J. Geotech. Geoenviron. Eng. 133(2), 144–154 (2007)CrossRefGoogle Scholar
  19. 19.
    Mani, R., Kadau, D., Herrmann, H.: Liquid migration in sheared unsaturated granular media. Granul. Matter 15(4), 447–454 (2013)CrossRefGoogle Scholar
  20. 20.
    Mani, R., Kadau, D., Or, D., Herrmann, H.J.: Fluid depletion in shear bands. Phys. Rev. Lett. 109, 248001 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Mani, R., Semprebon, C., Kadau, D., Herrmann, H.J., Brinkmann, M., Herminghaus, S.: Role of contact-angle hysteresis for fluid transport in wet granular matter. Phys. Rev. E 91, 042204 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55(1–2), 1–45 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Pierrat, P., Agrawal, D.K., Caram, H.S.: Effect of moisture on the yield locus of granular materials: theory of shift. Powder Technol. 99(3), 220–227 (1998)CrossRefGoogle Scholar
  24. 24.
    Pierrat, P., Caram, H.S.: Tensile strength of wet granula materials. Powder Technol. 91(2), 83–93 (1997)CrossRefGoogle Scholar
  25. 25.
    Rumpf, H.: Agglomeration, pp. 379–418. Interscience, New York (1962)Google Scholar
  26. 26.
    Scheel, M.: Experimental Investigations of the Mechanical Properties of Wet Granular Matter. Ph.D. thesis, Georg-August-Universität Göttingen (2009)Google Scholar
  27. 27.
    Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Breidenbach, B., Herminghaus, S.: Morphological clues to wet granular pile stability. Nat. Mater. 7(3), 189–193 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Herminghaus, S.: Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime. J. Phys. Condens. Matter 20(49), 494,236 (2008)CrossRefGoogle Scholar
  29. 29.
    Schiffer, P.: A bridge to sandpile stability. Nat. Phys. 1, 21–22 (2005)CrossRefGoogle Scholar
  30. 30.
    Schubert, H., Herrmann, W., Rumpf, H.: Deformation behaviour of agglomerates under tensile stress. Powder Technol. 11(2), 121–131 (1975)CrossRefGoogle Scholar
  31. 31.
    Seemann, R., Mönch, W., Herminghaus, S.: Liquid flow in wetting layers on rough substrates. Europhys. Lett. 55, 698–704 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Takenaka, H., Kawashima, Y., Hishida, J.: The effects of interfacial physical properties on the cohesive forces of moist powder in air and in liquid. Chem. Pharm. Bull. 29(9), 2653–2660 (1981)CrossRefGoogle Scholar
  33. 33.
    Turba, E., Rumpf, H.: Zugfestigkeit von preßlingen mit vorwiegender bindung durch van der waals-kräfte und ihre beeinflussung durch adsorptionsschichten. Chem. Ing. Tech. 36(3), 230–240 (1964)CrossRefGoogle Scholar
  34. 34.
    Utter, B., Behringer, R.: Transients in sheared granular matter. Euro. Phys. J. E 14(4), 373–380 (2004)CrossRefGoogle Scholar
  35. 35.
    Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Filippo Bianchi
    • 1
  • Marcel Thielmann
    • 2
  • Roman Mani
    • 1
  • Dani Or
    • 3
  • Hans Jürgen Herrmann
    • 1
  1. 1.Institute for Building MaterialsETH ZürichZurichSwitzerland
  2. 2.Bayerisches GeoinstitutUniversity of BayreuthBayreuthGermany
  3. 3.Institute of Biogeochemistry and Pollutant DynamicsETH ZürichZurichSwitzerland

Personalised recommendations