Granular Matter

, 18:44 | Cite as

Cylindrical sand pile formation in spinning vertical container partially filled with water

  • Selin ManukyanEmail author
  • Hans Martin Sauer
  • Sena Pekkendir
  • Mehmet Levent Kurnaz
Brief Communication


Within the scope of this study we report the formation of a cylindrical sand pile in a container rotating around a vertical axis. A steady stream of dry sand is poured off-rotation-axis in a cylindrical acrylic glass container, which is partially filled with water. Due to the centrifugal force at a certain angular velocity, water forms a truncated parabolic, which leaves the center part of the container base empty, and as the sand particles accumulate on the dry base, a cylindrical pile is formed with a parabolic pit at the top. The vertically growing cylindrical sand pile is more stable with small grains than with big sand particles. The mechanical stabilization of the cylindrical sand pile is achieved by the equilibration of the capillary forces and the resulting negative Laplace pressure of the soaked up water inside the pile. The essential features of the phenomenon are discussed and its robustness is demonstrated with experiments by varying the experimental boundary conditions and sand type.


Granular agglomeration Conglomeration Vertical rotational movement 



This work was supported by the BU Reasearch Fund under the project number 08B301. We would like to thank to Osman Börekci, Muhittin Mungan, Mehmet Erbudak, Özer Çinicioğlu and Cem Yolcu for their contributions and comments.

Supplementary material

10035_2016_653_MOESM1_ESM.wmv (4.7 mb)
Supplementary material 1 (wmv 4763 KB)
10035_2016_653_MOESM2_ESM.wmv (4.5 mb)
Supplementary material 2 (wmv 4630 KB)


  1. 1.
    Newey, M., Ozik, J.: Band-in-band segregation of multi-disperse granular mixtures. Granul. Matter. 14–2, 185–190 (2012)Google Scholar
  2. 2.
    Herrmann, H.J., Flekkøy, E., Nagel, K., Peng, G., Ristow, G.: Non-linearity and breakdown in soft condensed matter. Springer, Berlin (1994)Google Scholar
  3. 3.
    Nicolas, M., Chomaz, J.M., Vallet, D., Guazzelli, E.: Experimental investigations of the nature of the first wavy instability in liquid-fluidized beds. Phys. Fluids A 8, 1987–1989 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    Luding, S., Duran, J., Mazozi, T., Clement, E., Rajchenbach, J.: Simulation of granular flow: cracks in a falling sandpile. World Scientic, Singapur (1996)Google Scholar
  5. 5.
    Forterre, Y., Pouliquen, O.: Longitudinal vortices in granular flows. Phys. Rev. Lett. 86, 26 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Altshuler, E., Ramos, O., Martinez, E., Batista-Leyva, A.J., Rivera, A., Bassler, K.E.: Sandpile formation by revolving rivers. Phys. Rev. Lett. 91, 1 (2003)CrossRefGoogle Scholar
  7. 7.
    Pouliquen, O., Belzons, M., Nicolas, M.: Fluctuating particle motion during shear induced granular compaction. Phys. Rev. Lett. 91, 1 (2003)CrossRefGoogle Scholar
  8. 8.
    Martinez, E., Prez-Penichet, C., Sotolongo-Costa, O., Ramos, O., Maløy, K.J., Douady, S., Altshuler, E.: Up-hill solitary waves in granular flows. Phys. Rev. E 75, 025703 (2007)CrossRefGoogle Scholar
  9. 9.
    Shinbrot, T., Khakhar, D., McCarthy, J.J., Ottino, J.M.: The role of voids in granular convection. Phys. Rev. Lett. 55, 6121–6133 (1997)ADSGoogle Scholar
  10. 10.
    Desmond, K., Franklin, : Jamming of three-dimensional prolate granular materials. Phys. Rev. E 73, 031306 (2006)Google Scholar
  11. 11.
    Aranson, I.S., Malloggi, F., Clement, E.: Transverse instability of avalanches in granular flows down an Incline. Phys. Rev. E 73, 050302 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Chaiworn, P., Fang, F., Chung, S.L., Wang, C.: Brazil nut effect in annular containers. Granular Matter 13, 050302 (2011)CrossRefGoogle Scholar
  13. 13.
    Jaeger, H.M., Nagel, S.R.: Granul. Sol. Liquids, and gases, reviews of modern physics 68, 79384 (1996)Google Scholar
  14. 14.
    Gera, D., O’Brien, T., Syamlal, M.: Hydrodynamics of particle segregation in fluidized beds. Int. J. Multiphase Flow 30, 419 (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Savage, S.B.: Disorder and granular media. North-Holland, Amsterdam (1993)Google Scholar
  16. 16.
    Baxter, G.W., Yeung, C.: The rotating bucket of sand: experiment and theory. Chaos 9–3, 631 (1999)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Zamankhan, P.: Air-grain interfaces in spinning granular films at high rotation rates. Europhys. Lett. 66, 205 (2004)CrossRefGoogle Scholar
  18. 18.
    Rapaport, D.C.: Radial and axial segregation of granular matter in a rotating cylinder: a simulation study. Phys. Rev. E 75, 031301 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Taberlet, N., Richard, P.: Diffusion of a granular pulse in a rotating drum. Phys. Rev. E 73, 041301 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Schlichtingand, H., Gersten, K.: Boundary-layer theory. McGraw-Hill, New York (2000)CrossRefGoogle Scholar
  21. 21.
    Valentine, D.T., Jahnke, C.C.: Flows induced in a cylinder with both end walls rotating. Phys. Fluids 6, 2702 (1994)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Craig, R.F.: Soil mechanics. VanNostrand Reinhold Co Ltd, New York (1974)Google Scholar
  23. 23.
    Scott, R.F.: Principle of soil mechanics. Addison-Wesley publishing comp Inc, New York (1963)Google Scholar
  24. 24.
    Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Breidenbachand, B., Herminghaus, S.: Morphological clues to wet granular pile stability. Nat. Mater. 7, 89–193 (2008)CrossRefGoogle Scholar
  25. 25.
    Bishop, A.,W.: The measurement of pore pressure in the triaxial test. In: Prec. Conference on Pore Pressure and Suction Soils: Butterworths, London, pp. 52–60 (1960a)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Selin Manukyan
    • 1
    Email author
  • Hans Martin Sauer
    • 2
  • Sena Pekkendir
    • 3
  • Mehmet Levent Kurnaz
    • 3
  1. 1.Merck KGaADarmstadtGermany
  2. 2.Institute of Printing Science and TechnologyTU DarmstadtDarmstadtGermany
  3. 3.Department of PhysicsBoğaziçi UniversityIstanbulTurkey

Personalised recommendations