Advertisement

Granular Matter

, 18:45 | Cite as

Decorated granular layers for impact decimation

  • Mukesh Tiwari
  • T. R. Krishna Mohan
  • Surajit Sen
Original Paper

Abstract

We present dynamical simulations and simple mechanics arguments to propose a system of stacked blocks of square lattices of elastic spheres that can be used to decimate an incident impulse. Mass mismatch between adjacent blocks is accomplished by making the sphere radius in the upper block twice that of the lower block. The system decimates impact energies by converting the initial impulse into two solitary waves and then progressively into many smaller amplitude solitary waves. We also show that near perfect impact decimation capability can be realized with increased mass mismatch between adjacent blocks by creating sandwiched structures in which a block with smaller density spheres is surrounded on both sides with blocks of denser spheres. The proposed systems are expected to be scalable down to spheres of \(\sim \)100 nm and work for solid and hollow spheres.

Keywords

Square granular lattice Impact absorbing metamaterials DEM  

Notes

Acknowledgments

SS acknowledges the partial support of the US Army Research Office.

References

  1. 1.
    Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733–743 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Sinkovits, R.S., Sen, S.: Nonlinear dynamics in granular columns. Phys. Rev. Lett. 74, 2686–2689 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Sen, S., Sinkovits, R.S.: Sound propagation in impure granular columns. Phys. Rev. E 54, 6857–6865 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104–6117 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Job, S., Melo, F., Sokolow, A., Sen, S.: How solitary waves interact with boundaries in a 1d granular medium. Phys. Rev. Lett. 94, 178002 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rept. 462, 21–66 (2008)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Pauchard, L., Rica, S.: Contact and compression of elastic spherical shells: the physics of a ping-pong ball. Philos. Mag. B 78, 225–233 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, S.Y., Nesterenko, V.F.: Attenuation of short strongly nonlinear stress pulses in dissipative granular chains. Phys. Rev. E 91, 062211 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30(5), 949–980 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    Manciu, M., Sen, S., Hurd, A.J.: Impulse propagation in dissipative and disordered chains with power-law repulsive potentials. Phys. D 156, 226–240 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Takato, Y., Lechman, J., Sen, S.: Strong plastic deformation and softening of fast colliding nanoparticles. Phys. Rev. E 89, 033308 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Takato, Y., Benson, M.E., Sen, S.: Rich collision dynamics of soft and sticky crystalline nanoparticles: numerical experiments. Phys. Rev. E 92, 032423 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Porter, M.A., Kevrekidis, P.G., Daraio, C.: Granular crystal: nonlinear dynamics meets materials engineering. Phys. Today 68(11), 44–50 (2015)CrossRefGoogle Scholar
  15. 15.
    Sen, S., Manciu, F.S., Manciu, M.: Thermalizing an impulse. Phys. A 299, 551–558 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Nakagawa, M., Agui, J.H., Wu, D.T., Extramiana, D.: Impulse dispersion in a tapered granular chain. Granul. Matter 4, 167–174 (2003)CrossRefGoogle Scholar
  17. 17.
    Doney, R., Sen, S.: Decorated, tapered, and highly nonlinear granular chain. Phys. Rev. Lett. 97, 155502 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Melo, F., Job, S., Santibanez, F., Tapia, F.: Experimental evidence of shock mitigation in a Hertzian tapered chain. Phys. Rev. E 73, 041305 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Harbola, U., Rosas, A., Romero, A.H., Esposito, M., Lindenberg, K.: Pulse propagation in tapered granular chains: an analytic study. Phys. Rev. E 80, 031303 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Doney, R.L., Agui, J.H., Sen, S.: Energy partitioning and impulse dispersion in the decorated, tapered, strongly nonlinear granular alignment: a system with many potential applications. J. Appl. Phys. 106, 064905 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Machado, L.P., Rosas, A., Lindenberg, K.: A quasi-unidimensional granular chain to attenuate impact. Eur. Phys. J. E 37, 1–7 (2014)CrossRefGoogle Scholar
  22. 22.
    Hong, J., Xu, A.: Nondestructive identification of impurities in granular medium. Appl. Phys. Lett. 81, 4868–4870 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Hong, J.: Universal power-law decay of the impulse energy in granular protectors. Phys. Rev. Lett. 97, 108001 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Energy trapping and shock disintegration in composite granular medium. Phys. Rev. Lett. 96, 058002 (2006)Google Scholar
  25. 25.
    Fraternali, F., Porter, M.A., Daraio, C.: Optimal design of composite granular protectors. Mech. Adv. Mater. Struct. 17, 1–19 (2010)CrossRefGoogle Scholar
  26. 26.
    Katsuragi, H.: Physics of Soft Impact and Cratering. Springer, Tokyo (2016)CrossRefGoogle Scholar
  27. 27.
    Britan, A., Ben-Dor, G., Igra, O., Shapiro, H.: Shock waves attenuation by granular filters. Int. J. Multiph. Flow 27, 617–634 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Sen, S., Mohan, T.R.K., Donald, P., Visco, J., Swaminathan, S., Sokolow, A., Avalos, E., Nakagawa, M.: Using mechanical energy as a probe for the detection and imaging of shallow buried inclusions in dry granular beds. Int. J. Mod. Phys. B (Singapore) 19, 2951–2973 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Rossmanith, H.P., Shukla, A.: Photoelastic investigation of dynamic load transfer in granular media. Acta Mech. 42, 211–225 (1982)CrossRefGoogle Scholar
  30. 30.
    Zhu, Y., Shukla, A., Sadd, M.: The effect of microstructural fabric on dynamic load transfer in two dimensional assemblies of elliptical particles. J. Mech. Phys. Solids 44, 1283–1303 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Leonard, A., Ponson, L., Daraio, C.: Exponential stress mitigation in structured granular composites. Extreme Mech. Lett. 1, 23–28 (2014). (and references therein)CrossRefGoogle Scholar
  32. 32.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  33. 33.
    Kloss, C., Goniva, C., Hager, A., et al.: Models, algorithms and validation for opensource DEM and CFD-DEM. Progr. Comput. Fluid Dyn. Int. J. 12(23), 140–152 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Hertz, H.: Über die berührung fester elastischer körper. J. Reine Angew. Math. 92, 156–171 (1881)MathSciNetGoogle Scholar
  36. 36.
    Job, S., Melo, F., Sokolow, A., Sen, S.: Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10, 13–20 (2007)CrossRefzbMATHGoogle Scholar
  37. 37.
    Tichler, A.M., Gómez, L.R., Upadhyaya, N., Campman, X., Nesterenko, V.F., Vitelli, V.: Transmission and reflection of strongly nonlinear solitary waves at granular interfaces. Phys. Rev. Lett. 111, 048001 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Sokolow, A., Bittle, E.G., Sen, S.: Solitary wave train formation in hertzian chains. Europhys. Lett. 77, 24002 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Daraio, C., Nesterenko, V., Herbold, E., Jin, S.: Strongly nonlinear waves in a chain of teflon beads. Phys. Rev. E 72, 016603 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Leonard, A., Ponson, L., Daraio, C.: Wave mitigation in ordered networks of granular chains. J. Mech. Phys. Solids 73, 103–117 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mukesh Tiwari
    • 1
  • T. R. Krishna Mohan
    • 2
  • Surajit Sen
    • 3
  1. 1.Group in Computational Science and High Performance Computing DA-IICTGandhinagarIndia
  2. 2.CSIR Fourth Paradigm Institute (erstwhile CSIR center for Mathematical Modelling and Computer Simulation (C-MMACS))BangaloreIndia
  3. 3.Department of PhysicsState University of New York BuffaloBuffaloUSA

Personalised recommendations