Advertisement

Effect of size distribution on mixing of a polydisperse wet granular material in a belt-driven enclosure

Abstract

We use a recently developed coupled fluid–particle discrete element model to study mixing of a wet granular material in a two dimensional setting. The particles are modeled as linearly elastic disks and are considered to be immersed in a Newtonian fluid. The fluid–particle interaction is modeled using a linear drag model under the assumption that the fluid inertia is small compared to particle inertia. The granular slurry is driven by a belt moving at constant velocity in a square cavity. In the simulations, we consider three types of size distributions: monodisperse, bidisperse with several particle size ratios, and polydisperse Gaussian distributions with several different standard deviations. Mixing is characterized using both strong and weak measures. Size segregation is observed only in the bidisperse simulations. The energy required for mixing polydisperse slurries decreases with increasing standard deviation of the particle sizes. Finally, we show the benefits of engineering certain polydisperse particle size distributions towards minimizing energy consumption.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Benito, J.G., Vidales, A.M.: Novel aspects on the segregation in quasi 2D piles. Powder Technol. 234, 123–131 (2013)

  2. 2.

    Gray, J.M.N.T., Ancey, C.: Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535–588 (2011)

  3. 3.

    Remy, B., Khinast, J.G., Glasser, B.J.: Polydisperse granular flows in a bladed mixer: experiments and simulations of cohesionless spheres. Chem. Eng. Sci. 66(9), 1811–1824 (2011)

  4. 4.

    Chandratilleke, G.R., Yu, A.B., Bridgwater, J.: A DEM study of the mixing of particles induced by a flat blade. Chem. Eng. Sci. 79, 54–74 (2012)

  5. 5.

    Dube, O., Alizadeh, E., Chaouki, J., Bertrand, F.: Dynamics of non-spherical particles in a rotating drum. Chem. Eng. Sci. 101, 486–502 (2013)

  6. 6.

    Devriendt, L., Gatumel, C., Berthiaux, H.: Experimental evidence of mixture segregation by particle size distribution. Part. Sci. Technol. 31(6), 653–657 (2013)

  7. 7.

    Nguyen, D., Rasmuson, A., Björn, I.N., Thalberg, K.: CFD simulation of transient particle mixing in a high shear mixer. Powder Technol. 258, 324–330 (2014)

  8. 8.

    Arntz, M.M.H.D., Beeftink, H.H., Otter, W.K., Briels, W.J., Boom, R.M.: Segregation of granular particles by mass, radius, and density in a horizontal rotating drum. AIChE J. 60(1), 50–59 (2014)

  9. 9.

    Collet, R., Oulahna, D., De Ryck, A., Jezequel, P.H., Martin, M.: Mixing of a wet granular medium: influence of the liquid addition method. Powder Technol. 208(2), 367–371 (2011)

  10. 10.

    Kudrolli, A.: Granular matter: sticky sand. Nat. Mater. 7(3), 174–175 (2008)

  11. 11.

    Hsiau, S.S., Liao, C.C., Tai, C.H., Wang, C.Y.: The dynamics of wet granular matter under a vertical vibration bed. Granul. Matter 15(4), 437–446 (2013)

  12. 12.

    Samiei, K., Peters, B.: Experimental and numerical investigation into the residence time distribution of granular particles on forward and reverse acting grates. Chem. Eng. Sci. 87, 234–245 (2013)

  13. 13.

    Liu, P.Y., Yang, R.Y., Yu, A.B.: Self-diffusion of wet particles in rotating drums. Phys. Fluids 25(6), 063301 (2013). (1994-present)

  14. 14.

    Pereira, G.G., Cleary, P.W.: Radial segregation of multi-component granular media in a rotating tumbler. Granul. Matter 15(6), 705–724 (2013)

  15. 15.

    Darelius, A., Remmelgas, J., Rasmuson, A., van Wachem, B., Björn, I.N.: Fluid dynamics simulation of the high shear mixing process. Chem. Eng. J. 164(23), 418–424 (2010). (Pharmaceutical Granulation and Processing)

  16. 16.

    Liu, P.Y., Yang, R.Y., Yu, A.B.: Dynamics of wet particles in rotating drums: effect of liquid surface tension. Phys. Fluids 23(1), 013304 (2011)

  17. 17.

    Kosinski, P., Kosinska, A., Hoffmann, A.C.: Simulation of solid particles behaviour in a driven cavity flow. Powder Technol. 191(3), 327–339 (2009)

  18. 18.

    Tsorng, S.J., Capart, H., Lo, D.C., Lai, J.S., Young, D.L.: Behaviour of macroscopic rigid spheres in lid-driven cavity flow. Int. J. Multiph. Flow 34(1), 76–101 (2008)

  19. 19.

    Bonkinpillewar, P.D., Kulkarni, A., Panchagnula, M.V., Vedantam, S.: A novel coupled fluid particle DEM for simulating dense granular slurry dynamics. Granul. Matter 17(4), 511–521 (2015)

  20. 20.

    Rodríguez, D., Benito, J.G., Ippolito, I., Hulin, J.P., Vidales, A.M., Uñac, R.O.: Dynamical effects in the segregation of granular mixtures in quasi 2d piles. Powder Technol. 269, 101–109 (2015)

  21. 21.

    Misra, A., Poorsolhjouy, P.: Micro-macro scale instability in 2D regular granular assemblies. Contin. Mech. Thermodyn. 27(1), 63–82 (2015)

  22. 22.

    Leonardi, A., Cabrera, M., Wittel, F.K., Kaitna, R., Mendoza, M., Wu, W., Herrmann, H.J.: Granular-front formation in free-surface flow of concentrated suspensions. Phys. Rev. E 92, 052204 (2015)

  23. 23.

    Yin, H., Zhang, M., Liu, H.: Numerical simulation of three-dimensional unsteady granular flows in rotary kiln. Powder Technol. 253, 138–145 (2014)

  24. 24.

    Juarez, G., Christov, I.C., Ottino, J.M., Lueptow, R.M.: Mixing by cutting and shuffling 3D granular flow in spherical tumblers. Chem. Eng. Sci. 73, 195–207 (2012)

  25. 25.

    Jain, A., Metzger, M.J., Glasser, B.J.: Effect of particle size distribution on segregation in vibrated systems. Powder Technol. 237, 543–553 (2013)

  26. 26.

    Qingqing, Y., Zhiman, S., Fei, C., Keizo, U.: Enhanced mobility of polydisperse granular flows in a small flume. Geoenviron. Disasters 2(1), 1–9 (2015)

  27. 27.

    Jop, P.: Rheological properties of dense granular flows. C.R. Phys. 16(1), 62–72 (2015)

  28. 28.

    Lätzel, M., Luding, S., Herrmann, H.J.: Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granul. Matter 2(3), 123–135 (2000)

  29. 29.

    Drumm, C., Tiwari, S., Kuhnert, J., Bart, H.: Finite pointset method for simulation of the liquid-liquid flow field in an extractor. Comput. Chem. Eng. 32(12), 2946–2957 (2008)

  30. 30.

    Bonkinpillewar, P.D., Vedantam, S., Panchagnula, M.V.: Flow of wet granular material in a lid driven cavity. In: Seventh M.I.T. Conference on Computational Fluid and Solid Mechanics. Massachusetts Institute of Technology, USA (2013)

  31. 31.

    Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)

  32. 32.

    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

  33. 33.

    Doucet, J., Bertrand, F., Chaouki, J.: A measure of mixing from lagrangian tracking and its application to granular and fluid flow systems. Chem. Eng. Res. Des. 86(12), 1313–1321 (2008)

  34. 34.

    Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176(1), 250 (1968)

  35. 35.

    Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041307 (2005)

  36. 36.

    Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

  37. 37.

    Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)

Download references

Acknowledgments

The computational resources in the High Performance Cluster was provided by the Indian Institute of Technology Madras. The data in this study was not presented earlier.

Author information

Correspondence to Pallab Sinha Mahapatra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 36054 KB)

Supplementary material 2 (mp4 25828 KB)

Supplementary material 1 (mp4 36054 KB)

Supplementary material 2 (mp4 25828 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, P.S., Mathew, S., Panchagnula, M.V. et al. Effect of size distribution on mixing of a polydisperse wet granular material in a belt-driven enclosure. Granular Matter 18, 30 (2016). https://doi.org/10.1007/s10035-016-0633-1

Download citation

Keywords

  • Wet granular mixing
  • Polydisperse flow
  • Belt driven enclosure