Granular Matter

, 18:19 | Cite as

Numerical investigation on the electrical transmission ability of a shearing powder layer

Original Paper

Abstract

Recent developments in powder technology gave birth to a new lubricant—powder lubricant. Compared to liquid lubricant, powder lubricant like graphite powder has several advantages, such as good electrical conductivity and good thermal resistance. Such advantages are especially appreciated in sliding electrical contacts. Thus, the study of the electrical transmission ability of a shearing powder layer under different dynamical constraints appears to have a great interest. Recent works allowed to model the coupling of mechanical and electrical effects in a discrete medium. This algorithm was extended to study the electrical properties of a shearing powder layer with discrete element method. The mechanical and electrical behaviors of the sample were studied in different dynamical regimes, characterized by the inertial number I. The results exhibit an interesting relationship between the average contact resistance and the inertial number I. An exponential increase of the sample’s electrical resistance as well as the induced electrical noise are observed closed to the dense flow limit. Such observations underline the fact that to ensure the electrical transmission ability of the powder layer, one must keep the particle size and shear rate small, and a sufficiently large pressure.

Keywords

Electrical conductance Powder lubricant Discrete element method 

References

  1. 1.
    Wornyoh, E.Y.A., Jasti, V.K., Higgs, C.F.: A review of dry particulate lubrication: powder and granular materials. ASME J. Tribol. 129(2), 438–448 (2007)CrossRefGoogle Scholar
  2. 2.
    Holm, R.: Electric contacts: theory and application, 4th edn. Springer, New York (1981)Google Scholar
  3. 3.
    Renouf, M., Fillot, N.: Coupling electrical and mechanical effects in discrete element simulations. Int. J. Numer. Methods Eng. 74(2), 238–254 (2008). doi:10.1002/nme.2157 CrossRefMATHGoogle Scholar
  4. 4.
    Cundall, P.A.: A computer model for simulating progressive large scale movements of blocky rock systems. Proceedings of the Symposium of the International Society of Rock Mechanics 1, 132–150 (1971)Google Scholar
  5. 5.
    Rognon, P.G., Roux, J.N., Naaïm, M., Chevoir, F.: Dense flows of cohesive granular materials. J. Fluid Mech. 596, 21–47 (2008)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J. (ed.) Nonsmooth Mechanics and Applications, pp. 1–82. P. Panagiotopoulos, Athens (1988)CrossRefGoogle Scholar
  7. 7.
    Renouf, M., Cao, H.P., Nhu, V.H.: Multiphysical modeling of third-body rheology. Tribol. Int. 44(4), 417–425 (2011)CrossRefGoogle Scholar
  8. 8.
    Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3–4), 235–257 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, 2nd edn, p. 424. Oxford University Press, Clarendon Press, Oxford (1986)MATHGoogle Scholar
  10. 10.
    Noda, T., Kato, H., Takasu, T., Okura, A., Inagaki, M.: The electrical resistivity of carbon black under compression. Bull. Chem. Soc. Jpn. 39, 829–833 (1966)Google Scholar
  11. 11.
    Lätzel, M., Luding, S., Herrmann, H.J.: From discontinuous models towards a continuum description. In: Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Luding, S., Ramm, E. (eds.) Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. Lecture Notes in Physics, vol. 568, p. 215. Springer, Heidelberg (2001)Google Scholar
  12. 12.
    Radjai, F., Jean, M., Moreau, J.J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77(2), 274–277 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Tillemans, H.-J., Herrmann, H.J.: Simulating deformations of granular solids under shear. Phys. A 217, 261–288 (1995)CrossRefGoogle Scholar
  15. 15.
    Dahmen, K.A., Ben-Zion, Y., Uhl, J.T.: A simple analytic theory for the statistics of avalanches in sheared granular materials. Nat. Phys. 7(7), 554–557 (2011)CrossRefGoogle Scholar
  16. 16.
    Azéma, E., Radjai, F.: Internal structure of inertial granular flows. Phys. Rev. Lett. 112(7), 078001 (2014)Google Scholar
  17. 17.
    Braunovic, M., Konchits, V.V., Myshkin, N.K.: Electrical Contacts: Fundamentales, Applications and Technology, p. 672. CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  18. 18.
    Bredel, L.J., Johnson, L.B., Kuhlmann-Wilsdorf, D.: Teaming measurements of the coefficient friction and of contact resistance as a tool for the investigation of sliding interfaces. Wear 120, 161–173 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire de Mécanique et Génie Civil (LMGC), CNRSUniversité de MontpellierMontpellierFrance
  2. 2.LaMCoS, INSA-Lyon, CNRS UMR5259Université de LyonVilleurbanneFrance
  3. 3.Valéo système électriqueIsle d’AbeauFrance
  4. 4.INTRIGVilleurbanneFrance

Personalised recommendations