Advertisement

Granular Matter

, 18:11 | Cite as

Enhanced run-out of dam-break granular flows caused by initial fluidization and initial material expansion

  • S. MontserratEmail author
  • A. Tamburrino
  • O. Roche
  • Y. Niño
  • C. F. Ihle
Original Paper

Abstract

We report results of the run-out of experimental dam-break flows in a horizontal channel generated from the collapse of columns of fine (75 \(\upmu \)m) particles fluidized at various degrees. We find that the flow run-out (x) made dimensionless by the initial column length (\(x_{o})\) is a power function of the initial column height-to-length ratio (r), as shown in previous works with non-fluidized flows. The run-out of flows initially fluidized at different degrees is accounted by \(x/x_{o }=\alpha r^{n}\). For initially non-fluidized flows, our values of \(\alpha \) are significantly higher than those reported earlier for flows of coarser granular material (\(>\)0.15 mm), showing that finely grained flows have longer run-outs compared to their coarser counterparts. The coefficient \(\alpha \) is a function of the initial degree of fluidization, with a higher growth above 93 % of fluidization, which coincides with the onset of bed expansion, and it accounts for a flow run-out increase being up to more than twice that of non-fluidized flows. The parameter \(\alpha \) is well correlated with the amount of initial bed expansion, which undergoes a sharp transition at high degrees of fluidization that has shown to be an important mechanism for reducing flow friction. Our results are consistent with earlier findings that showed that bed expansion significantly increases pore pressure diffusion timescales in static columns, suggesting that the long run-out of initially expanded finely grained flows is due to their ability to diffuse pore pressure slowly.

Keywords

Granular flow Run-out Fluidization Pore pressure Dam-break Experiments 

Notes

Acknowledgments

This work was supported by ECOS-CONICYT Project C11U01, Institut de Recherche pour le Développement (IRD, France), Departamento de Ingeniería Civil, Universidad de Chile, Advanced Mining Technology Center (AMTC) and the Chilean National Commission for Scientific and Technological Research, CONICYT, through Fondecyt Projects Nos. 11110201, 11130254 and 1130910. K. Hutter and an anonymous reviewer are thanked for fruitful reviews. This is Laboratory of Excellence ClercVolc contribution no. 189.

References

  1. 1.
    Lucas, A., Mangeney, A.: Mobility and topographic effects for large Valles Marineris landslides on Mars. Geophys. Res. Lett. 34, L10201 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Pirulli, M., Mangeney, A.: Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech. Rock Eng. 41(1), 59–84 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Singer, K.N., McKinnon, W.B., Schenk, P.M., Moore, J.M.: Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating. Nat. Geosci. 5, 574–578 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Shreve, R.L.: Leakage and fluidization in air-layer lubricated avalanches. Geol. Soc. Am. Bull. 79, 653–658 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    Goren, L., Aharonov, E.: Long runout landslides: the role of frictional heating and hydraulic diffusivity. Geophys. Res. Lett. 34, L07301 (2007)Google Scholar
  6. 6.
    Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35, 245–296 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Roche, O., Montserrat, S., Niño, Y., Tamburrino, A.: Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: insights into the emplacement dynamics of pyroclastic flows. J. Geophys. Res. 115, B09206 (2010)ADSGoogle Scholar
  8. 8.
    Roche, O., Attali, M., Mangeney, A., Lucas, A.: On the run-out distance of geophysical gravitational flows: insight from fluidized granular collapse experiments. Earth Planet. Sci. Lett. 311, 375–385 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Bartelt, P., Buser, O., Platzer, K.: Fluctuation dissipation relations for granular snow avalanches. J. Glaciol. 52(179), 631–643 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Bartelt, P., Buser, O., Platzer, K: Starving avalanches: frictional mechanisms at the tails of finite- sized mass movements. Geophys. Res. Lett. 34, L20407 (2007)Google Scholar
  11. 11.
    Collins, G.S., Melosh, H.J.: Acoustic fluidization and the extraordinary mobility of sturzstroms. J. Geophys. Res. 108(B10), 2473 (2003)ADSGoogle Scholar
  12. 12.
    Linares-Guerrero, E., Goujon, C., Zenit, R.: Increased mobility of bidisperse granular avalanches. J. Fluid Mech. 593(1), 475–504 (2007)ADSzbMATHGoogle Scholar
  13. 13.
    Roche, O., Gilbertson, M.A., Phillips, J.C., Sparks, R.S.J.: The influence of particle size on the flow of initially fluidised powders. Powder Technol. 166(3), 167–174 (2006)CrossRefGoogle Scholar
  14. 14.
    Phillips, J.C., Hogg, A.J., Kerswell, R.R., Thomas, N.H.: Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet. Sci. Lett. 246(3), 466–480 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Meruane, C., Tamburrino, A., Roche, O.: Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid. Phys. Rev E 86(2), 026311 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Lucas, A., Mangeney, A., Ampuero, J. P.: Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat. Commun. 5, 3417 (2014)Google Scholar
  17. 17.
    Kleinhans, M.G., Markies, H., de Vet, S.J., Postema, F.N.: Static and dynamic angles of repose in loose granular materials under reduced gravity. J. Geophys. Res. 116, E11004 (2011)Google Scholar
  18. 18.
    Major, J.J., Iverson, R.M.: Debris-flow deposition: effects of pore-fluid pressure and friction concentrated at flow margins. Geol. Soc. Am. Bull. 111, 1424–1434 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Major, J.J.: Gravity-driven consolidation of granular slurries—implications for debris-flow deposition and deposit characteristics. J. Sedim Res. 70, 64–83 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Goren, L., Aharonov, E., Sparks, D., Toussaint, R.: Pore pressure evolution in deforming granular material: a general formulation and the infinitely stiff approximation. J. Geophys. Res. 115, B09216 (2010)ADSGoogle Scholar
  21. 21.
    McArdell, B.W., Bartelt, P., Kowalski, J.: Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. 34, L07406 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Iverson, R.M., Logan, M., LaHusen, R.G., Berti, M.: The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115, F03005 (2010)ADSGoogle Scholar
  23. 23.
    Lajeunesse, E., Mangeney, A., Vilotte, J.P.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 16, 2371 (2004)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Balmforth, N.J., Kerswell, R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399–428 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lube, G., Huppert, H.E., Sparks, R.S.J., Hallworth, M.A.: Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175–199 (2004)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Collapses of two-dimensional granular columns. Phys. Rev. E. 72, 041301 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Lajeunesse, E., Monnier, J.B., Homsy, G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17, 103302 (2005)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.P., Lajeunesse, E., Aubertin, A., Pirulli, M.: On the use of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110, B09103 (2005)ADSGoogle Scholar
  29. 29.
    Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., Lucas, A.: Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040 (2010)ADSGoogle Scholar
  30. 30.
    Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Granular column collapses down rough, inclined channels. J. Fluid Mech. 675, 347–368 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Roche, O., Montserrat, S., Niño, Y., Tamburrino, A.: Experimental observations of water-like behavior of initially fluidized, dam break granular flows and their relevance for the propagation of ash-rich pyroclastic flows. J. Geophys. Res. 113, B12203 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Roche, O.: Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull. Volcanol. 74, 1807–1820 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Roche, O., Gilbertson, M., Phillips, J.C., Sparks, R.S.J.: Experimental study of gas-fluidized granular flows with implications for pyroclastic flow emplacement. J. Geophys. Res. 109, B10201 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    Cody, G.D., Goldfarb, D.J., Storch Jr., G.V., Norris, A.N.: Particle granular temperature in gas fluidized beds. Powder Technol. 87, 211–232 (1996)CrossRefGoogle Scholar
  35. 35.
    Aharonov, E., Sparks, D.: Rigidity phase transition in granular packings. Phys. Rev. E. 60(6), 6890–6896 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Biggs, M.J., Glass, D., Xie, L., Zivkovic, V., Buts, A., Kounders, M.C.: Granular temperature in a gas fluidized bed. Granul. Matter 10(2), 63–73 (2008)CrossRefGoogle Scholar
  37. 37.
    Nichol, K., Zanin, A., Bastien, R., Wandersman, E., van Hecke, M.: Flow-induced agitations create a granular fluid. Phys. Rev. Lett. 104(7), 078302 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Shepherd, R.G.: Correlations of permeability and grain size. Groundwater 27(5), 633–638 (1989)CrossRefGoogle Scholar
  39. 39.
    Geldart, D.: Types of gas fluidization. Powder Technol. 7, 285–292 (1973)CrossRefGoogle Scholar
  40. 40.
    Eisfeld, B., Schnitzlein, K.: The influence of confining walls on the pressure drop in packed beds. Chem. Eng. Sci. 56, 4321–4329 (2001)CrossRefGoogle Scholar
  41. 41.
    Gilbertson, M.A., Jessop, D.E., Hogg, A.J.: The effects of gas flow on granular currents. Philos. Trans. R. Soc. A 366, 2191–2203 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Rao, A., Curtis, J.S., Hancock, B.C., Wassgren, C.: The effect of column diameter and bed height on minimum fluidization velocity. AiChE J. 56, 2304–2311 (2010)Google Scholar
  43. 43.
    Cheng, N.S.: Wall effect on pressure drop in packed beds. Powder Technol. 210, 261–266 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Montserrat, S., Tamburrino, A., Roche, O., Niño, Y.: Pore pressure diffusion in defluidizing granular columns. J. Geophys. Res. 117, F02034 (2012)ADSGoogle Scholar
  45. 45.
    Mangeney, A., Heinrich, P., Roche, R.: Analytical solution for testing debris avalanche numerical models. Pure Appl. Geophys. 157, 1081–1096 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    Girolami, L., Druitt, T.H., Roche, O.: Towards a quantitative understanding of pyroclastic flows: effects of expansion on the dynamics of laboratory fluidized granular flows. J. Volcanol. Geotherm. Res. 296, 31–39 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Meruane, C., Tamburrino, A., Roche, O.: On the role of the ambient fluid on gravitational granular flow dynamics. J. Fluid Mech. 648, 381–404 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Girolami, L., Druitt, T.H., Roche, O., Khrabrykh, Z.: Propagation and hindered settling of laboratory ash flows. J. Geophys. Res. 113, B02202 (2008)ADSGoogle Scholar
  49. 49.
    Girolami, L., Roche, O., Druitt, T.H., Corpetti, T.: Velocity fields and depositional processes in laboratory ash flows. Bull. Volcanol. 72, 747–759 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Iverson, R.M., LaHusen, R.G.: Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246(4931), 796–799 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Montserrat
    • 1
    Email author
  • A. Tamburrino
    • 1
    • 2
  • O. Roche
    • 3
  • Y. Niño
    • 1
    • 2
  • C. F. Ihle
    • 1
    • 4
  1. 1.Advanced Mining Technology CenterUniversidad de ChileSantiagoChile
  2. 2.Departamento de Ingeniería CivilUniversidad de ChileSantiagoChile
  3. 3.Laboratoire Magmas et VolcansUniversité Blaise Pascal-CNRS-IRD, OPGC, Campus Universitaire des CézeauxAubière CedexFrance
  4. 4.Department of Mining EngineeringUniversidad de ChileSantiagoChile

Personalised recommendations