Advertisement

Granular Matter

, Volume 17, Issue 5, pp 617–627 | Cite as

Stochastic generation of virtual air pores in granular materials

  • A. Chiarelli
  • A. R. Dawson
  • A. García
Original Paper
  • 311 Downloads

Abstract

A computational method is described for the generation of virtual air pores with randomized features in granular materials. The method is based on the creation of a stack of two dimensional stochastically generated domains of packed virtual aggregate particles that are converted to three dimensions and made to intersected with one another. The three dimensional structure that is created is then sampled with an algorithm that detects the void space left between the intersected particles, which corresponds to the air void volume in real materials. This allows the generation of a map of the previously generated three dimensional model that can be used to analyse the topology of the void channels. The isotropy of the samples is here discussed and analysed. The air void size distribution in all the virtual samples generated in this study is described with the Weibull distribution and the goodness of fit is successfully evaluated with the Kolmogorov–Smirnov test. The specific surface of the virtual samples is also successfully compared to that of real samples. The results show that a stochastic approach to the generation of virtual granular materials based only on geometric principles is feasible and provides realistic results.

Keywords

Granular material Air void content Packing Porosity Asphalt 

Notes

Acknowledgments

The authors thank the University of Nottingham for the financial support provided for the Ph.D. of Andrea Chiarelli. The Ph.D. studies of the first author are funded by the University of Nottingham (A. García new lecturer’s award, no grant number).

References

  1. 1.
    Aligizaki, K.K.: Pore Structure of Cement-Based Materials. CRC Press, Boca Raton (2005)Google Scholar
  2. 2.
    Andrienko, Y.A., Brilliantov, N.V., Krapivsky, P.L.: Pattern formation by growing droplets: the touch-and-stop model of growth. J. Stat. Phys. (1994). doi: 10.1007/BF02186870 MathSciNetGoogle Scholar
  3. 3.
    Baddeley, A.: Spatial Point Processes and Their Applications. http://www.apps.stat.vt.edu/leman/VTCourses/BaddeleyPointProcesses.pdf (2007). Accessed 23 Jun 2015
  4. 4.
    Chen, J., Huang, B., Chen, F., Shu, X.: Application of discrete element method to superpave gyratory compaction. Road Mater. Pavement Des. 13, 480–500 (2012). doi: 10.1080/14680629.2012.694160 CrossRefGoogle Scholar
  5. 5.
    Chen, J., Huang, B., Shu, X.: Air-void distribution analysis of asphalt mixture using discrete element method. J. Mater. Civ. Eng. 25, 1375–1385 (2013). doi: 10.1061/(ASCE)MT.1943-5533.0000661 CrossRefGoogle Scholar
  6. 6.
    Chiarelli, A., Dawson, A.R., García, A.: Generation of virtual asphalt mixture porosity for computational modelling. Powder Technol. (2015). doi: 10.1016/j.powtec.2015.01.070 Google Scholar
  7. 7.
    Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley, New York (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009). doi: 10.1137/070710111 MathSciNetCrossRefADSzbMATHGoogle Scholar
  9. 9.
    Feng, H., Pettinari, M., Hofko, B., Stang, H.: Study of the internal mechanical response of an asphalt mixture by 3-D discrete element modeling. Constr. Build. Mater. 77, 187–196 (2015). doi: 10.1016/j.conbuildmat.2014.12.022 CrossRefGoogle Scholar
  10. 10.
    Hossain, M., Scofield, L.: Porous pavement for control of highway run-off. Arizona Department of Transportation (1991)Google Scholar
  11. 11.
    Hyman, J.D., Smolarkiewicz, P.K., Winter, C.L.: Heterogeneities of flow in stochastically generated porous media. Phys. Rev. E 85(056), 701 (2012). doi: 10.1103/PhysRevE.86.056701 Google Scholar
  12. 12.
    Jiang, F., Tsuji, T.: Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media. Phys. Rev. E 90(053), 306 (2014). doi: 10.1103/PhysRevE.90.053306 Google Scholar
  13. 13.
    Kongkitkul, W., Musika, N., Tongnuapad, C., Jongpradist, P., Youwai, S.: Anisotropy in compressive strength and elastic stiffness of normal and polymer-modified asphalts. Soils Found. 54, 94–108 (2014). doi: 10.1016/j.sandf.2014.02.002 CrossRefGoogle Scholar
  14. 14.
    Kutay, M.E.: Modeling moisture transport in asphalt pavements. Ph.D. thesis, University of Maryland (2005)Google Scholar
  15. 15.
    Lamond, J.F.: Significance of Tests and Properties of Concrete and Concrete-Making Materials. ASTM International, West Conshohocken (2006)CrossRefGoogle Scholar
  16. 16.
    Last, G., Penrose, M.D.: Percolation and limit theory for the poisson lilypond model. Random Struct. Algorithms 42, 226–249 (2013). doi: 10.1002/rsa.20410 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Masad, E., Jandhyala, V.K., Dasgupta, N., Somadevan, N., Shashidhar, N.: Characterization of air void distribution in asphalt mixes using X-ray computed tomography. J. Mater. Civ. Eng. 14, 122–129 (2002). doi: 10.1061/(ASCE)0899-1561(2002)14:2(122) CrossRefGoogle Scholar
  18. 18.
    Ohser, J., Mücklick, F.: Statistical Analysis of Microstructures in Materials Science. Wiley, New York (2000)zbMATHGoogle Scholar
  19. 19.
    Ohser, J., Schladitz, K.: 3D Images of Materials Structures: Processing and Analysis. Wiley, New York (2009)Google Scholar
  20. 20.
    Ruiz, A., Alberola, R., Perez, F., Sanchez, B.: Porous asphalt mixtures in Spain. Transportation Research Record No. 1265, Porous Asphalt Pavements: An International Perspective, pp. 87–94 (2002)Google Scholar
  21. 21.
    Schenker, I., Filser, F.T., Gauckler, L.J.: Stochastic generation of particle structures with controlled degree of heterogeneity. Granul. Matter 12, 437–446 (2010). doi: 10.1007/s10035-010-0188-5 CrossRefzbMATHGoogle Scholar
  22. 22.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry (Probability and Its Applications). Springer, New York (2008)Google Scholar
  23. 23.
    Schöpfer, M.P., Abe, S., Childs, C., Walsh, J.J.: The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from dem modelling. Int. J. Rock Mech. Min. Sci. 46, 250–261 (2009). doi: 10.1016/j.ijrmms.2008.03.009 CrossRefGoogle Scholar
  24. 24.
    Siena, M., Riva, M., Hyman, J.D., Winter, C.L., Guadagnini, A.: Relationship between pore size and velocity probability distributions in stochastically generated porous media. Phys. Rev. E 89(013), 018 (2014). doi: 10.1103/PhysRevE.89.013018 Google Scholar
  25. 25.
    Tashman, L., Masad, E., D’Angelo, J., Bukowski, J., Harman, T.: X-ray tomography to characterize air void distribution in superpave gyratory compacted specimens. Int. J. Pavement Eng. 3, 19–28 (2002). doi: 10.1080/10298430290029902a CrossRefGoogle Scholar
  26. 26.
    Thyagarajan, S., Tashman, L., Masad, E., Bayomy, F.: The heterogeneity and mechanical response of hot mix asphalt laboratory specimens. Int. J. Pavement Eng. 11, 107–121 (2010). doi: 10.1080/10298430902730521 CrossRefGoogle Scholar
  27. 27.
    Vasilyev, L., Raoof, A., Nordbotten, J.M.: Effect of mean network coordination number on dispersivity characteristics. Transp. Porous Media 95, 447–463 (2012). doi: 10.1007/s11242-012-0054-5 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Younger, K.: Evaluation of Porous Pavements Used in Oregon. http://ir.library.oregonstate.edu/xmlui/handle/1957/35565 (1994). Accessed 21 Jan 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Nottingham Transportation Engineering Centre (NTEC), Faculty of EngineeringThe University of NottinghamNottinghamUK

Personalised recommendations