Advertisement

Granular Matter

, Volume 17, Issue 5, pp 567–578 | Cite as

Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios

  • H. ChooEmail author
  • S. E. Burns
Original Paper

Abstract

This experimental investigation quantified the shear wave velocity \((V_{s})\) of granular packs composed of large grains mixed with small quantities of finer grains, up to the critical fines content (\(FC^{*}\)). Bender element tests were performed on 112 mixtures to quantify the variation of \(V_{s}\) with fines content (FC), particle size ratio, and void ratio. When FC was less than \(FC^{*}\), the shear wave velocity decreased with increasing FC, due to the reduction in interparticle contacts between large grains. In addition, the observed reduction in packing stiffness was more apparent as the size difference between the two particles increased. Most notably, the results of this study demonstrated that \(V_{s}\) of granular mixtures of two different silica particles with \(FC <FC^{*}\) was best expressed in terms of intergranular void ratio when finer particles were treated as void space, as opposed to the global void ratio.

Keywords

Granular mixture Shear wave velocity Critical fines content Intergranular void ratio Size ratio Bender element test 

Notes

Acknowledgments

Partial funding for this work was provided by Georgia Institute of Technology. The authors wish to thank Dr. Carlos Santamarina, Dr. David Frost, and Dr. Paul Mayne for their insightful comments throughout the course of this work.

References

  1. 1.
    Andrus, R.D., Stokoe, K.H.: Liquefaction resistance of soils from shear-wave velocity. J. Geotech. Geoenviron. Eng. 126(11), 1015–1025 (2000)CrossRefGoogle Scholar
  2. 2.
    Bowles, J.E.: Physical and Geotechnical Properties of Soils. McGraw-Hill Book Company, New York (1979)Google Scholar
  3. 3.
    Carraro, J.A.H., Bandini, P., Salgado, R.: Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance. J. Geotechn. Geoenviron. Eng. 129(11), 965–976 (2003)CrossRefGoogle Scholar
  4. 4.
    Carraro, J.A.H., Prezzi, M., Salgado, R.: Shear strength and stiffness of sands containing plastic or nonplastic fines. J. Geotechn. Geoenviron. Eng. 135(9), 1167–1178 (2009)CrossRefGoogle Scholar
  5. 5.
    Chien, L.K., Oh, Y.N., Chang, C.H.: Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil. Can. Geotech. J. 39(1), 254–265 (2002)CrossRefGoogle Scholar
  6. 6.
    Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotechn. Geoenviron. Eng. 132(5), 591–602 (2006)CrossRefGoogle Scholar
  7. 7.
    Choo, H., Burns, S.E.: Effect of overconsolidation ratio on dynamic properties of binary mixtures of silica particles. Soil Dyn. Earthq. Eng. 60, 44–50 (2014)CrossRefGoogle Scholar
  8. 8.
    Choo, H., Larrahondo, J., Burns, S.E.: Coating effects of nano-sized particles onto sand surfaces: small strain stiffness and contact mode of iron oxide-coated sands. J. Geotechn. Geoenviron. Eng. (2014). doi: 10.1061/(ASCE)GT.1943-5606.0001188
  9. 9.
    Choo, H., Yeboah, N.N., Burns, S.E.: Small to intermediate strain properties of fly ashes with various carbon and biomass contents. Can. Geotechn. J. (2015). doi: 10.1139/cgj-2014-0069
  10. 10.
    DeAlba, P., Baldwin, K., Janoo, V., Roe, G., Celikkol, B.: Elastic-wave velocities and liquefaction potential. Geotech. Test. J. 7(2), 77–87 (1984)CrossRefGoogle Scholar
  11. 11.
    Evans, T.M., Valdes, J.R.: The microstructure of particulate mixtures in one-dimensional compression: numerical studies. Granular Matter 13(5), 657–669 (2011)CrossRefGoogle Scholar
  12. 12.
    Fernandez, A.L.: Tomographic Imaging the State of Stress. PhD thesis, Georgia Institute of Technology, Atlanta (2000)Google Scholar
  13. 13.
    Georgiannou, V.N., Burland, J.B., Hight, D.W.: The undrained behaviour of clayey sands in triaxial compression and extension. Geotechnique 40(3), 431–449 (1990)CrossRefGoogle Scholar
  14. 14.
    Hardin, B.O., Richart, F.E.: Elastic wave velocities in granular soils. J. Soil Mech. Found. Div. 89(1), 33–65 (1963)Google Scholar
  15. 15.
    Huang, Y.T., Huang, A.B., Kuo, Y.C., Tsai, M.D.: A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dyn. Earthq. Eng. 24(9–10), 733–743 (2004)CrossRefGoogle Scholar
  16. 16.
    Ishihara, K.: Liquefaction and flow failure during earthquakes. Geotechnique 43(3), 351–415 (1993)CrossRefGoogle Scholar
  17. 17.
    Iwasaki, T., Tatsuoka, F.: Effects of grain size and grading on dynamic shear moduli of sands. Soils Found. 17(3), 19–35 (1977)CrossRefGoogle Scholar
  18. 18.
    Jang, J.: Gas production from hydrate-bearing sediments. Ph.D. Thesis, Georgia Institute of Technology, Atlanta (2011)Google Scholar
  19. 19.
    Kuerbis, R., Vaid, Y.P.: Sand sample preparation–The slurry deposition method. Soils Found. 28(4), 107–118 (1988)CrossRefGoogle Scholar
  20. 20.
    Lade, P.V., Liggio, C.D., Yamamuro, J.A.: Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech. Test. J. 21(4), 336–347 (1998)CrossRefGoogle Scholar
  21. 21.
    Lade, P.V., Yamamuro, J.A.: Effects of nonplastic fines on static liquefaction of sands. Can. Geotech. J. 34(6), 918–928 (1997)CrossRefGoogle Scholar
  22. 22.
    Lee, C., Truong, Q.H., Lee, W., Lee, J.S.: Characteristics of rubber-sand particle mixtures according to size ratio. J. Mater. Civ. Eng. 22(4), 323–331 (2010)CrossRefGoogle Scholar
  23. 23.
    Lee, J.S., Dodds, J., Santamarina, J.C.: Behavior of rigid-soft particle mixtures. J. Mater. Civ. Eng. 19(2), 179–184 (2007)CrossRefGoogle Scholar
  24. 24.
    Lee, J.S., Santamarina, J.C.: Bender elements: performance and signal interpretation. J. Geotechn. Geoenviron. Eng. 131(9), 1063–1070 (2005)CrossRefGoogle Scholar
  25. 25.
    Liu, N., Mitchell, J.K.: Influence of nonplastic fines assessment on shear wave velocity-based of liquefaction. J. Geotechn. Geoenviron. Eng. 132(8), 1091–1097 (2006)CrossRefGoogle Scholar
  26. 26.
    LoPresti, D.C.F., Jamiolkowski, M., Pallara, O., Cavallaro, A., Pedroni, S.: Shear modulus and damping of soils. Geotechnique 47(Compendex), 603–617 (1997)CrossRefGoogle Scholar
  27. 27.
    Minh, N.H., Cheng, Y.P., Thornton, C.: Strong force networks in granular mixtures. Granular Matter 16(1), 69–78 (2014)CrossRefGoogle Scholar
  28. 28.
    Mitchell, J.K., Soga, K.: Fundamentals of Soil Behavior. Wiley, London (2005)Google Scholar
  29. 29.
    Pinson, D., Zou, R.P., Yu, A.B., Zulli, P., McCarthy, M.J.: Coordination number of binary mixtures of spheres. J. Phys. D-Appl. Phys. 31(4), 457–462 (1998)CrossRefADSGoogle Scholar
  30. 30.
    Polito, C.P., Martin, J.R.: Effects of nonplastic fines on the liquefaction resistance of sands. J. Geotechn. Geoenviron. Eng. 127(5), 408–415 (2001)CrossRefGoogle Scholar
  31. 31.
    Rahman, M.M., Lo, S.R., Baki, M.A.L.: Equivalent granular state parameter and undrained behaviour of sand-fines mixtures. Acta Geotech. 6(4), 183–194 (2011)CrossRefGoogle Scholar
  32. 32.
    Randolph, M.F., Dolwin, J., Beck, R.: Design of driven piles in sand. Geotechnique 44(3), 427–448 (1994)CrossRefGoogle Scholar
  33. 33.
    Robertson, P.K., Campanella, R.G.: Liquefaction potential of sands using the CPT. J. Geotechn. Eng. 111(3), 384–403 (1985)CrossRefGoogle Scholar
  34. 34.
    Robertson, P.K., Sasitharan, S., Cunning, J.C., Sego, D.C.: Shear-wave velocity to evaluate in-situ state of Ottawa Sand. J. Geotechn. Eng. 121(3), 262–273 (1995)CrossRefGoogle Scholar
  35. 35.
    Roesler, S.K.: Anisotropic shear modulus due to stress anisotropy. J. Geotechn. Eng. Div. 105(7), 871–880 (1979)Google Scholar
  36. 36.
    Salgado, R., Bandini, P., Karim, A.: Shear strength and stiffness of silty sand. J. Geotechn. Geoenviron. Eng. 126(5), 451–462 (2000)CrossRefGoogle Scholar
  37. 37.
    Santamarina, J.C., Klein, K.A., Fam, M.A.: Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring. Wiley, Chichester (2001)Google Scholar
  38. 38.
    Seed, H.B., Idriss, I.M., Arango, I.: Evaluation of liquefaction potential using field performance data. J. Geotechn. Eng. 109(3), 458–482 (1983)CrossRefGoogle Scholar
  39. 39.
    Shin, H., Santamarina, J.C.: Role of particle angularity on the mechanical behavior of granular mixtures. J. Geotechn. Geoenviron. Eng. 139(2), 353–355 (2013)CrossRefGoogle Scholar
  40. 40.
    Tatsuoka, F., Shibuya, S.: Deformation characteristics of soils and rocks from field and laboratory tests. Proceedings of the 9th Asian Regional Conference on SMFE, pp. 101–170 (1991)Google Scholar
  41. 41.
    Thevanayagam, S.: Effect of fines and confining stress on undrained shear strength of silty sands. J. Geotechn. Geoenviron. Eng. 124(6), 479–491 (1998)CrossRefGoogle Scholar
  42. 42.
    Thevanayagam, S., Shenthan, T., Mohan, S., Liang, J.: Undrained fragility of clean sands, silty sands, and sandy silts. J. Geotechn. Geoenviron. Eng. 128(10), 849–859 (2002)CrossRefGoogle Scholar
  43. 43.
    Ueda, T., Matsushima, T., Yamada, Y.: Effect of particle size ratio and volume fraction on shear strength of binary granular mixture. Granular Matter 13(6), 731–742 (2011)CrossRefGoogle Scholar
  44. 44.
    Vaid, Y.P., Fisher, J.M., Kuerbis, R.H., Negussey, D.: Particle gradation and liquefaction. J. Geotechn. Eng. 116(4), 698–703 (1990)CrossRefGoogle Scholar
  45. 45.
    Vallejo, L.E.: Interpretation of the limits in shear strength in binary granular mixtures. Can. Geotech. J. 38(5), 1097–1104 (2001)CrossRefGoogle Scholar
  46. 46.
    Yamamuro, J.A., Lade, P.V.: Static liquefaction of very loose sands. Can. Geotech. J. 34(6), 905–917 (1997)CrossRefGoogle Scholar
  47. 47.
    Yamamuro, J.A., Wood, F.M.: Effect of depositional method on the undrained behavior and microstructure of sand with silt. Soil Dyn. Earthq. Eng. 24(9–10), 751–760 (2004)CrossRefGoogle Scholar
  48. 48.
    Yang, S.L., Lacasse, S., Sandven, R.F.: Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotech. Test. J. 29(2), 102–107 (2006)Google Scholar
  49. 49.
    Yin, Z.Y., Zhao, J.D., Hicher, P.Y.: A micromechanics-based model for sand–silt mixtures. Int. J. Solids Struct. 51(6), 1350–1363 (2014)CrossRefGoogle Scholar
  50. 50.
    Youd, T.L.: Factors controlling maximum and minimum densities of sands. ASTM Spec. Tech. Publ. 523, 98–112 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Civil, Environmental, and Architectural EngineeringKorea UniversitySeoulSouth Korea
  2. 2.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations