Advertisement

Granular Matter

, Volume 17, Issue 5, pp 603–616 | Cite as

Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling

  • Adel AlbabaEmail author
  • Stéphane Lambert
  • François Nicot
  • Bruno Chareyre
Original Paper

Abstract

This paper presents a numerical model based on Discrete Element Method used to reproduce a series of tests of dry granular flow impacting a rigid wall. The flow was composed of poly-dispersed non-spherical particles flowing in an inclined chute with different inclination angles. The model has been calibrated based on the flow thickness measurements and the shape of the flowing particles (a single sphere and a clump). Quantitative comparison with experimental data showed good agreement in terms of peak impact force on the wall, the time of the peak and also the residual force values at the end of the tests. After validating the model, relation between microstructure and the normal impact force against the wall was investigated, by comparing the variation of impact force values along the height of the wall for different tests. Microstructural heterogeneities were observed in the impacting and depositing stages of the flow, indicating the presence of arching effect in the granular medium behind the wall.

Keywords

DEM Granular flow Rigid wall Numerical modeling 

Notes

Acknowledgments

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number 289911. The authors would also like to acknowledge the many valuable suggestions made by Thierry Faug, a researcher in Irstea research institute in Grenoble.

References

  1. 1.
    Jakob, M., Oldrich, H.: Debris-flow hazards and related phenomena. Springer, Newyork (2005)Google Scholar
  2. 2.
    Kishi, N., Ikeda, K., Konno, H., Kawase, R.: In: Proceedings of Structures under Shock and Impact IV, pp. 351–360 (2000)Google Scholar
  3. 3.
    Nicot, F., Cambou, B., Mazzoleni, G.: From a constitutive modelling of metallic rings to the design of rockfall restraining nets. Int. J. Numer. Anal. Methods Geomech. 25(1), 49–70 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Volkwein, A.: Proceedings of Computing in Civil Engineering. ASCE, Cancun (2005)Google Scholar
  5. 5.
    Hearn, G., Barrett, R.K., Henson, H.H.: Development of effective rockfall barriers. J. Transp. Eng. 121(6), 507–516 (1995)CrossRefGoogle Scholar
  6. 6.
    Peila, D., Pelizza, S., Sassudelli, F.: Evaluation of behaviour of rockfall restraining nets by full scale tests. Rock Mech. Rock Eng. 31(1), 1–24 (1998)CrossRefGoogle Scholar
  7. 7.
    Hutter, K., Koch, T., Pluüss, C., Savage, S.: The dynamics of avalanches of granular materials from initiation to runout. Part II experiments. Acta Mech. 109(1–4), 127–165 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Azanza, E., Chevoir, F., Moucheront, P.: Experimental study of collisional granular flows down an inclined plane. J. Fluid Mech. 400, 199–227 (1999)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Pudasaini, S.P., Hutter, K.: Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208 (2003)MathSciNetCrossRefADSzbMATHGoogle Scholar
  10. 10.
    Moriguchi, S., Borja, R.I., Yashima, A., Sawada, K.: Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 4(1), 57–71 (2009)CrossRefGoogle Scholar
  11. 11.
    Buchholtz, V., Pöschel, T.: Interaction of a granular stream with an obstacle. Granul. Matter 1(1), 33–41 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Teufelsbauer, H., Wang, Y., Chiou, M.C., Wu, W.: Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul. Matter 11(4), 209–220 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Calvetti, F., Crosta, G., Tatarella, M.: Numerical simulation of dry granular flows: from the reproduction of small-scale experiments to the prediction of rock avalanches. Rivista Italiana di Geotecnica 34(2), 21–38 (2000)Google Scholar
  15. 15.
    Faug, T., Beguin, R., Chanut, B.: Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Phys. Rev. E 80(2), 021305 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Mollon, G., Richefeu, V., Villard, P., Daudon, D.: Numerical simulation of rock avalanches: influence of a local dissipative contact model on the collective behavior of granular flows. J. Geophys. Res. Earth Surf. (2003–2012) 117(F2), F02036 (2012)ADSGoogle Scholar
  17. 17.
    Campbell, C.S., Cleary, P.W., Hopkins, M.: Large-scale landslide simulations: global deformation, velocities and basal friction. J. Geophys. Res. B Solid Earth (1978–2012) 100(B5), 8267–8283 (1995)CrossRefADSGoogle Scholar
  18. 18.
    Lemieux, P.A., Durian, D.: From avalanches to fluid flow: a continuous picture of grain dynamics down a heap. Phys. Rev. Lett. 85(20), 4273 (2000)CrossRefADSGoogle Scholar
  19. 19.
    Chu, T., Hill, G., McClung, D., Ngun, R., Sherkat, R.: Experiments on granular flows to predict avalanche runup. Can. Geotech. J. 32(2), 285–295 (1995)CrossRefGoogle Scholar
  20. 20.
    Keller, S., Ito, Y., Nishimura, K.: Measurements of the velocity distribution in ping-pong-ball avalanches. Ann. Glaciol. 26, 259–264 (1998)ADSGoogle Scholar
  21. 21.
    Faug, T., Lachamp, P., Naaim, M.: Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures. Nat. Hazards Earth Syst. Sci. 2(3/4), 187–191 (2002)Google Scholar
  22. 22.
    Valentino, R., Barla, G., Montrasio, L.: Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech. Rock Eng. 41(1), 153–177 (2008)CrossRefADSGoogle Scholar
  23. 23.
    Jiang, Y.J., Towhata, I.: Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mech. Rock Eng. 46(4), 713–729 (2013)CrossRefADSGoogle Scholar
  24. 24.
    Pudasaini, S.P., Hsiau, S.S., Wang, Y., Hutter, K.: Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Phys. Fluids 17(9), 093301 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  26. 26.
    Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránsk, J., Thoeni, K.: Yade Documentation. http://yade-dem.org/doc/ (2010)
  27. 27.
    Bertrand, D., Nicot, F., Gotteland, P., Lambert, S.: Discrete element method (DEM) numerical modeling of double-twisted hexagonal mesh. Can. Geotech. J. 45(8), 1104–1117 (2008)CrossRefGoogle Scholar
  28. 28.
    Schwager, T., Pöschel, T.: Coefficient of restitution and linear-dashpot model revisited. Granul. Matter 9(6), 465–469 (2007)CrossRefGoogle Scholar
  29. 29.
    Ghaisas, N., Wassgren, C.R., Sadeghi, F.: Cage instabilities in cylindrical roller bearings. J. Tribol. 126(4), 681–689 (2004)CrossRefGoogle Scholar
  30. 30.
    Catalano, E., Chareyre, B., Barthélémy, E.: Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int. J. Numer. Anal. Meth. Geomech. 38(1), 51–71 (2014)CrossRefGoogle Scholar
  31. 31.
    Savage, S.B.: The mechanics of rapid granular flows. Adv. Appl. Mech. 24, 289–366 (1984)CrossRefzbMATHGoogle Scholar
  32. 32.
    Chambers, J.M., Hastie, T.J.: Statistical Models in S. CRC Press, Inc., Boca Raton (1991)Google Scholar
  33. 33.
    Handy, R.L.: The arch in soil arching. J. Geotech. Eng. ASCE 111(3), 302–318 (1985)CrossRefGoogle Scholar
  34. 34.
    Azéma, E., Radjaï, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85(3), 031303 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Adel Albaba
    • 1
    • 3
    Email author
  • Stéphane Lambert
    • 1
    • 3
  • François Nicot
    • 1
    • 3
  • Bruno Chareyre
    • 2
    • 3
  1. 1.Irstea, UR ETGRSt-Martin d’HèresFrance
  2. 2.3SR, CNRSGrenobleFrance
  3. 3.Université Grenoble AlpesGrenobleFrance

Personalised recommendations