Granular Matter

, Volume 17, Issue 3, pp 297–309 | Cite as

Microscopic origins of shear stress in dense fluid–grain mixtures

  • Donia Marzougui
  • Bruno ChareyreEmail author
  • Julien Chauchat
Original Paper


A numerical model is used to simulate rheometer experiments at constant normal stress on dense suspensions of spheres. The complete model includes sphere–sphere contacts using a soft contact approach, short range hydrodynamic interactions defined by frame-invariant expressions of forces and torques in the lubrication approximation, and drag forces resulting from the poromechanical coupling computed with the DEM-PFV technique. Series of simulations in which some of the coupling terms are neglected highlight the role of the poromechanical coupling in the transient regimes. They also reveal that the shear component of the lubrication forces, though frequently neglected in the literature, has a dominant effect in the volume changes. On the other hand, the effects of lubrication torques are much less significant. The bulk shear stress is decomposed into contact stress and hydrodynamic stress terms whose dependency on a dimensionless shear rate—the so called viscous number \(I_v\)—are examined. Both contributions are increasing functions of \(I_v\), contacts contribution dominates at low viscous number (\(I_v<0.15\)) whereas lubrication contributions are dominant for \(I_v> 0.15\), consistently with a phenomenological law infered by other authors. Statistics of microstructural variables highlight a complex interplay between solid contacts and hydrodynamic interactions. In contrast with a popular idea, the results suggest that lubrication may not necessarily reduce the contribution of contact forces to the bulk shear stress. The proposed model is general and applies directly to sheared immersed granular media in which pore pressure feedback plays a key role (triggering of avalanches, liquefaction).


Granular suspension Rheology Lubrication Shear flow Discrete element method Hydromechanical coupling 



This work is supported by the Ph.D. grant awarded to D. Marzougui by the University of Grenoble-Alpes. This work has been supported by the Ph.D. grant awarded to D. Marzougui by the University of Grenoble-Alpes. The content of the manuscript has not been published in previous publications. The study participants are the first author and co-authors and they consented to publish on June 12th, 2014. No institutional review board was required for this publication. The work as a whole has been approved by the IMEP-2 comitee of doctoral studies at Univ Grenoble Alpes on july 3rd 2011.


  1. 1.
    Ancey, C., Coussot, P., Evesque, P.: A theoretical framework for granular suspensions in a steady simple shear flow. J. Rheol. (1978-present) 43(6), 1673–1699 (1999)CrossRefADSGoogle Scholar
  2. 2.
    Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. R Soc. Lond. Ser. A. Math. Phys. Sci. 225(1160), 49–63 (1954)CrossRefADSGoogle Scholar
  3. 3.
    Ball, R.C., Melrose, J.R.: A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and brownian forces. Phys. A Stat. Mech. Appl. 247(1), 444–472 (1997)CrossRefGoogle Scholar
  4. 4.
    Bossis, G., Brady, J.F.: Dynamic simulation of sheared suspensions. I. General method. J. Chem. Phys. 80(10), 5141–5154 (1984)CrossRefADSGoogle Scholar
  5. 5.
    Boyer, F., Guazzelli, É., Pouliquen, O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107(18), 188301 (2011)CrossRefADSGoogle Scholar
  6. 6.
    Brady, J.F., Bossis, G.: The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155, 105–129 (1985)CrossRefADSGoogle Scholar
  7. 7.
    Brady, J.F., Bossis, G.: Stokesian dynamics. Ann. Rev. Fluid Mech. 20, 111–157 (1988)CrossRefADSGoogle Scholar
  8. 8.
    Catalano, E., Chareyre, B., Barthélémy, E.: Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int. J. Numer. Anal. Methods Geomech. 38(1), 51–71 (2014)CrossRefGoogle Scholar
  9. 9.
    Chareyre, B., Cortis, A., Catalano, E., Barthélémy, E.: Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transp Porous Media 92(2), 473–493 (2012)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Cichocki, B., Hinsen, K.: Stokes drag on conglomerates of spheres. Phys. Fluids 7(2), 285–291 (1995)CrossRefADSzbMATHGoogle Scholar
  11. 11.
    Coussy, O.: Poromechanics. Wiley, London (2004)Google Scholar
  12. 12.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  13. 13.
    Ding, E.-J., Aidun, C.: Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J. Stat. Phys. 112(3–4), 685–708 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Durlofsky, L., Brady, J.F., Bossis, G.: Dynamic simulations of hydrodynamically interacting particles. J. Fluid Mech. 180, 21–49 (1987)CrossRefADSzbMATHGoogle Scholar
  15. 15.
    Einstein, A.: Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der physik 322(8), 549–560 (1905)CrossRefADSGoogle Scholar
  16. 16.
    Frankel, N.A., Acrivos, A.: On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 22(6), 847–853 (1967)CrossRefGoogle Scholar
  17. 17.
    Jeffrey, D.J., Onishi, Y.: Calculation of the resistance and mobility functions for two unequal rigid spheres in low-reynolds-number flow. J. Fluid Mech. 139, 261–290 (1984)CrossRefADSzbMATHGoogle Scholar
  18. 18.
    Jeffrey, D.J., Onishi, Y.: The forces and couples acting on two nearly touching spheres in low-reynolds-number flow. Zeitschrift für angewandte Mathematik und Physik ZAMP 35(5), 634–641 (1984)CrossRefADSzbMATHGoogle Scholar
  19. 19.
    Ladd, A.J.C.: Hydrodynamic interactions and the viscosity of suspensions of freely moving spheres. J. Chem. Phys. 90(2), 1149–1157 (1989)CrossRefADSGoogle Scholar
  20. 20.
    Ladd, A.J.C.: Dynamic simulations of sedimenting spheres. Phys. Fluids A Fluid Dyn. 5(2), 299–310 (1993)CrossRefADSGoogle Scholar
  21. 21.
    Ladd, A.J.C., Verberg, R.: Lattice-Boltzmann simulations of particle–fluid suspensions. J. Stat. Phys. 104(5–6), 1191–1251 (2001)Google Scholar
  22. 22.
    Lemaître, A., Roux, J.N., Chevoir, F.: What do dry granular flows tell us about dense non-brownian suspension rheology? Rheol. Acta 48(8), 925–942 (2009)Google Scholar
  23. 23.
    Marzougui, D., Chareyre, B., Chauchat, J.: Numerical simulation of dense suspension rheology using a dem-fluid coupled model. In: Onate, E. Owen, D.R.J., (eds.) Particle-based methods III: fundamentals and applications (2013)Google Scholar
  24. 24.
    Nguyen, N.-Q., Ladd, A.J.C.: Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66, 046708 (2002)CrossRefADSGoogle Scholar
  25. 25.
    Pailha, M., Pouliquen, O.: A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115–135 (2009)CrossRefADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    Rognon, P.G., Einav, I., Gay, C.: Internal relaxation time in immersed particulate materials. Phys. Rev. E 81(6), 061304 (2010)CrossRefADSGoogle Scholar
  27. 27.
    Rognon, P.G., Einav, I., Gay, C., et al.: Flowing resistance and dilatancy of dense suspensions: lubrication and repulsion. J. Fluid Mech. 689(1), 75–96 (2011)CrossRefADSzbMATHGoogle Scholar
  28. 28.
    Savage, S.B., Jeffrey, D.J.: The stress tensor in a granular flow at high shear rates. J. Fluid Mech. 110, 255–272 (1981)CrossRefADSzbMATHGoogle Scholar
  29. 29.
    Scholtes, L., Chareyre, B., Michallet, H., Catalano, E., Marzougui, D.: Modeling wave-induced pore pressure and effective stress in a granular seabed. Contin. Mech. Thermodyn. 27, 305–323 (2015)CrossRefADSGoogle Scholar
  30. 30.
    Seto, R., Mari, R., Morris, J.F., Denn, M.M.: Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111(21), 218301 (2013)CrossRefADSGoogle Scholar
  31. 31.
    Stickel, J.J., Powell, R.L.: Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129–149 (2005)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Tong, A.-T., Catalano, E., Chareyre, B.: Pore-scale flow simulations: model predictions compared with experiments on bi-dispersed granular assemblies. Oil Gas Sci. Technol. 67(5), 743–752 (2012)CrossRefGoogle Scholar
  33. 33.
    Trulsson, M., Andreotti, B., Claudin, P.: Transition from the viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109(11), 118305 (2012)CrossRefADSGoogle Scholar
  34. 34.
    Van den Brule, B., Jongschaap, R.J.J.: Modeling of concentrated suspensions. J. Stat. Phys. 62(5), 1225–1237 (1991)CrossRefADSGoogle Scholar
  35. 35.
    Šmilauer, V., Chareyre, B.: Yade dem formulation. (2010)
  36. 36.
    Yeo, K., Maxey, M.R.: Simulation of concentrated suspensions using the force-coupling method. J. Comput. Phys. 229(6), 2401–2421 (2010)CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.3SRUniversité Grenoble AlpesGrenobleFrance
  2. 2.3SRCNRSGrenobleFrance
  3. 3.LEGIUniversité Grenoble AlpesGrenobleFrance
  4. 4.LEGICNRSGrenobleFrance

Personalised recommendations