Granular Matter

, Volume 17, Issue 3, pp 325–343 | Cite as

DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions

  • M. Nitka
  • J. TejchmanEmail author
  • J. Kozicki
  • D. Leśniewska
Original Paper


Shear zones in initially medium dense cohesionless sand for quasi-static earth pressure problem of a small-scale retaining wall were analysed with a discrete element method (DEM) using spheres with contact moments. The passive sand failure for a very rough retaining wall undergoing horizontal translation was discussed. The DEM calculations were carried out with the different mean grain diameter. Micro-structural events appearing within granular shear zones such as: vortices, force chains, vortex structures and local void ratio fluctuations were investigated. Special attention was laid on a vortex-force chain correlation and frequency of the vortex appearance. The calculated geometry of shear zones was compared with experimental results of laboratory model tests analyzed using the DIC. DEM demonstrated its ability to describe the geometry of shear localization in sand behind the retaining wall and to follow the evolution of micro-structure in granular shear zones.


DEM Granular material Micro-polar hypoplasticity  Micro-structure evolution Retaining wall Shear zone 



The research work has been carried out as a part of the Project 2011/03/B/ST8/05865 “Experimental and theoretical investigations of micro-structural phenomena inside strain localization in granular materials” financed by Polish National Research Centre (NCN) in the time period 2013–2015. The project was approved in the end of 2012 by the review board of Polish National Research Centre.


  1. 1.
    Roscoe, K.H.: The influence of strains in soil mechanics. Geotechnique 20(2), 129–170 (1970)CrossRefGoogle Scholar
  2. 2.
    Widulinski, L., Tejchman, J., Kozicki, J., Leśniewska, D.: Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall. Int. J. Solids Struct. 48(7–8), 1191–1209 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Leśniewska, D., Niedostatkiewicz, M., Tejchman, J.: Experimental study on shear localization in granular materials within combined strain and stress field. Strain 47(2), 218–231 (2012)Google Scholar
  4. 4.
    Abedi, S., Rechenmacher, A.L., Orlando, A.D.: Vortex formation and dissolution in sheared sands. Granul. Matter 14(6), 695–705 (2012)CrossRefGoogle Scholar
  5. 5.
    Richefeu, V., Combe, G., Viggiani, G.: An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotech. Lett. 2, 113–118 (2012)CrossRefGoogle Scholar
  6. 6.
    Miller, T., Rognon, P., Metzger, B., et al.: Eddy viscosity in dense granular flows. Phys. Rev. Lett. 111(5), 058002 (2013)CrossRefADSGoogle Scholar
  7. 7.
    Lucia, J.B.A.: Passive earth pressure and failure in sand. Research Report, University of Cambridge, Cambridge (1966)Google Scholar
  8. 8.
    Gudehus, G., Schwing, E.: Standsicherheit historischer Stützwände. Internal Report of the Institute of Soil and Rock Mechanics, University Karlsruhe, Karlsruhe (1986)Google Scholar
  9. 9.
    Niedostatkiewicz, M., Leśniewska, D., Tejchman, J.: Experimental analysis of shear zone patterns in sand for earth pressure problems using particle image velocimetry. Strain 47(s2), 218–231 (2011)CrossRefGoogle Scholar
  10. 10.
    Cundall, P.A., Hart, R.: Numerical modeling of discontinua. J. Eng. Comput. 9, 101–113 (1992)CrossRefGoogle Scholar
  11. 11.
    Šmilauer, V., Chareyre, B.: Yade DEM formulation. Yade Documentation, Yade Project, 1st edn. (2011)
  12. 12.
    Kozicki, J., Donze, F.V.: A new open-source software developed for numerical simulations using discrete modelling methods. Comput. Methods Appl. Mech. Eng. 197, 4429–4443 (2008)CrossRefADSzbMATHGoogle Scholar
  13. 13.
    Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. ASCE J. Eng. Mech. 124(3), 285–292 (1988)CrossRefGoogle Scholar
  14. 14.
    Jiang, M.J., Yu, H.-S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340–357 (2005)CrossRefGoogle Scholar
  15. 15.
    Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behaviour of granular materials. Granul. Matter 12(5), 527–541 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kozicki, J., Tejchman, J., Műhlhaus, H.-B.: Discrete simulations of a triaxial compression test for sand by DEM. Int. J. Anal. Numer. Methods Geomech. 38, 1923–1952 (2014)CrossRefGoogle Scholar
  17. 17.
    Kozicki, J., Tejchman, J., Mróz, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter 14(4), 457–468 (2012)CrossRefGoogle Scholar
  18. 18.
    Hertz, H.: On the contact of elastic solids. J. Reine und Angewandte Mathematik 92(156–171), 1982 (1882)Google Scholar
  19. 19.
    Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. Trans. ASME 75, 327–344 (1953)MathSciNetGoogle Scholar
  20. 20.
    Kozicki, J., Niedostatkiewicz, M., Tejchman, J., Mühlhaus, H.-B.: Discrete modelling results of a direct shear test for granular materials versus FE results. Granul. Matter 15(5), 607–627 (2013)Google Scholar
  21. 21.
    Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe (in German). Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe, Karlsruhe (1992)Google Scholar
  22. 22.
    Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Roux, J.N., Chevoir, F.: Discrete numerical simulation and the mechanical behaviour of granular materials. Bulletin des Laboratoires des Ponts et Chaussees 254, 109–138 (2005)Google Scholar
  24. 24.
    Gudehus, G., Nübel, K.: Evolution of shear bands in sand. Geotechnique 54(3), 187–201 (2004)CrossRefGoogle Scholar
  25. 25.
    Tejchman, J., Bauer, E., Tantono, S.F.: Influence of initial density of cohesionless soil on evolution of passive earth pressure. Acta Geotech. 2(1), 53–63 (2007)CrossRefGoogle Scholar
  26. 26.
    Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R.I. (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Berlin (2008)Google Scholar
  27. 27.
    Gudehus, G.: Erddruckermittlung. Grundbautaschenbuch, Teil 1, Ernst und Sohn (1996)Google Scholar
  28. 28.
    Chupin, O., Rechenmacher, A.L, Abedi, S.: Finite strain analysis of non-uniform deformations inside shear bands in sands. Int. J. Numer. Anal. Methods Geomech. 36(14), 1651–1666 (2012)Google Scholar
  29. 29.
    Thornton, C., Zhang, L.: Numerical simulations of the direct shear test. Chem. Eng. Technol. 26(2), 1–4 (2003)CrossRefGoogle Scholar
  30. 30.
    Yan, Y., Ji, S.: Discrete element modelling of direct shear test for a granular material. Int. J. Numer. Anal. Methods Geomech. 34, 978–990 (2010)zbMATHGoogle Scholar
  31. 31.
    Tordesillas, A., Walker, D.M., Qun Lin, Q.: Force cycles and force chains. Phys. Rev. E 81, 011302 (2010)CrossRefADSGoogle Scholar
  32. 32.
    Wood, D.M., Lesniewska, D.: Stresses in granular materials. Granul. Matter 13, 395–415 (2011)CrossRefGoogle Scholar
  33. 33.
    Radjai, F., Roux, S.: Turbulent-like fluctuation in quasi-static flow of granular media. Phys. Rev. Lett. 89, 064302 (2002)CrossRefADSGoogle Scholar
  34. 34.
    Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater. 31, 407–442 (1999)CrossRefGoogle Scholar
  35. 35.
    Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 031306 (2006)CrossRefADSGoogle Scholar
  36. 36.
    Liu, X., Papon, A., Mühlhaus, H.-B.: Numerical study of structural evolution in shear band. Philoso. Mag. 92(28–30), 3501–3519 (2012)CrossRefADSGoogle Scholar
  37. 37.
    Peters, J.F., Walizer, L.E.: Patterned nonaffine motion in granular media. J. Eng. Mech. 139(10), 1479–1490 (2013)CrossRefGoogle Scholar
  38. 38.
    Tordesillas, A., Muthuswamy, M., Walsh, S.D.C.: Mesoscale measures of nonaffine deformation in dense granular assemblies. J. Eng. Mech. 134(12), 1095–1113 (2008)CrossRefGoogle Scholar
  39. 39.
    Tejchman, J., Górski, J.: Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression. Int. J. Solids Struct. 45(6), 1546–1569 (2008)CrossRefzbMATHGoogle Scholar
  40. 40.
    Tejchman, J., Wu, W.: Modeling of textural anisotropy in granular materials with stochastic micro-polar hypoplasticity. Int. J. Non-Linear Mech. 42(6), 882–894 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Nitka
    • 1
  • J. Tejchman
    • 1
    Email author
  • J. Kozicki
    • 1
  • D. Leśniewska
    • 2
  1. 1.Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyGdańskPoland
  2. 2.Faculty of Civil Engineering, Environmental and Geodetic SciencesKoszalin University of TechnologyKoszalinPoland

Personalised recommendations