Advertisement

Granular Matter

, Volume 17, Issue 2, pp 177–188 | Cite as

A circulation-based method for detecting vortices in granular materials

  • Pierre Rognon
  • Thomas Miller
  • Itai EinavEmail author
Original Paper

Abstract

Dense granular flows exhibit large clusters of grains rotating in correlated fashions. We present a method to identify and quantify such granular vortices, based on the circulation of velocity fluctuations around closed curves. Here, the method is applied on physical experiments of two-dimensional granular flows in the Stadium Shear Device geometry. Results illustrate how the method is capable to capture the positions, sizes, velocities and life-times of individual vortices. The method should be useful for many purposes, including: (1) complementing existing ways for defining typical correlation lengths in granular systems; (2) studying the kinematics behind the superior efficiency of granular systems to transfer of mass, heat and momentum when compared with other fluids; and (3) characterising vortices in other particulate fluid systems such as suspensions, emulsions and foams, which exhibit similar velocity patterns.

Keywords

Granular flows Vortices Turbulence Transfer 

References

  1. 1.
    Radjaï, F., Roux, S.: Turbulentlike fluctuations in quasistatic flow of granular media. Phys. Rev. Lett. 89(6), 064302 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Radjaï, F., Roux, S.: Scaling behaviour of velocity fluctuations in slow granular flows. Nonsmooth Mech. Anal. 12, 233–245 (2006)Google Scholar
  3. 3.
    Richefeu, V., Combe, G., Viggiani, G.: An experimental assessment of displacement fluctuations in a 2d granular material subjected to shear. Géotech. Lett. 2, 113 (2012)CrossRefGoogle Scholar
  4. 4.
    Utter, B., Behringer, R.: Experimental measures of affine and nonaffine deformation in granular shear. Phys. Rev. Lett. 100(20), 208302 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Griffani, D., Rognon, P., Metzger, B., Einav, I.: How rotational vortices enhance transfers. Phys. Fluids 25(9), 093301 (2013)CrossRefADSGoogle Scholar
  6. 6.
    Rognon, P., Einav, I.: Thermal transients and con-vection in dense granular materials. Phys. Rev. Lett. 105, 218301 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Ertas, D., Halsey, T.C.: Granular gravitational collapse and chute flow. Europhys. Lett. 60, 931 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Staron, L., Lagrée, P.Y., Josserand, C., Lhuillier, D.: Flow and jamming of a two-dimensional granular bed: toward a nonlocal rheology? Phys. Fluids 22, 113303 (2010)CrossRefADSGoogle Scholar
  9. 9.
    Miller, T., Rognon, P., Metzger, B., Einav, I.: Eddy viscosity in dense granular flows. Phys. Rev. Lett. 111(5), 058002 (2013)CrossRefADSGoogle Scholar
  10. 10.
    Rognon, P.G., Miller, T., Metzger, B., Einav, I.: Long-range wall perturbations in dense granular flows. J. Fluid Mech. 764, 171 (2015)CrossRefADSGoogle Scholar
  11. 11.
    Chaudhuri, P., Mansard, V., Colin, A., Bocquet, L.: Dynamical flow arrest in confined gravity driven flows of soft jammed particles. Phys. Rev. Lett. 109(3), 36001 (2012)CrossRefADSGoogle Scholar
  12. 12.
    Chaudhuri, P., Berthier, L., Bocquet, L.: Inhomogeneous shear flows in soft jammed materials with tunable attractive forces. Phys. Rev. E 85(2), 021503 (2012)CrossRefADSGoogle Scholar
  13. 13.
    Mohan, L.S., Rao, K.K., Nott, P.R.: Frictional cosserat model for slow shearing of granular materials. J. Fluid Mech. 457, 377 (2002)ADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    Pouliquen, O., Forterre, Y.: Slow dense granular flows as a self-induced process. Adv. Complex Syst. 4, 441 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Pouliquen, O., Forterre, Y.: A non-local rheology for dense granular flows. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 367(1909), 5091 (2009)CrossRefADSzbMATHGoogle Scholar
  16. 16.
    Goyon, J., Colin, A., Ovarlez, G., Ajdari, A., Bocquet, L.: Spatial cooperativity in soft glassy flows. Nature 454(7200), 84 (2008)CrossRefADSGoogle Scholar
  17. 17.
    Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108(17), 178301 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Bouzid, M., Trulsson, M., Claudin, P., Clément, E., Andreotti, B.: Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111(23), 238301 (2013)CrossRefADSGoogle Scholar
  19. 19.
    Mansard, V., Colin, A., Chaudhuri, P., Bocquet, L.: A molecular dynamics study of non-local effects in the flow of soft jammed particles. Soft Matter 9, 7489–7500 (2013)Google Scholar
  20. 20.
    Pope, S.B.: Turbulent flows. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Lechenault, F., Dauchot, O., Biroli, G., Bouchaud, J.P.: Critical scaling and heteroge-neous superdiffusion across the jamming/rigidity tran-sition of a granular glass. EPL Europhys. Lett. 83(4), 46003 (2008)CrossRefADSGoogle Scholar
  22. 22.
    Combe, G., Richefeu, V., Viggiani, G., Hall, S., Tengattini, A., Atman, A.: Experimental evidence of “granu-lence”. In: AIP Conference Proceedings, vol 1542, pp. 453–456 (2013)Google Scholar
  23. 23.
    Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granular Matter 12(3), 239 (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granular Matter 14(2), 289 (2012)CrossRefGoogle Scholar
  25. 25.
    Weinhart, T., Luding, S., Thornton, A.: From discrete particles to continuum fields in mixtures. In: POWDERS AND GRAINS 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media, 08–12 July 2013, Sydney, Australia. (AIP Publishing, 2013), pp. 1202–1205Google Scholar
  26. 26.
    Blair, D.L., Kudrolli, A.: Velocity correlations in dense granular gases. Phys. Rev. E 64(5), 050301 (2001)CrossRefADSGoogle Scholar
  27. 27.
    Mueth, D.M.: Measurements of particle dynamics in slow, dense granular couette flow. Phys. Rev. E 67(1), 011304 (2003)CrossRefADSGoogle Scholar
  28. 28.
    Pouliquen, O.: Velocity correlation in dense granular flows. Phys. Rev. Lett. 93, 248001 (2004)CrossRefADSGoogle Scholar
  29. 29.
    Orpe, A., Kudrolli, A.: Velocity correlations in dense granular flows observed with internal imaging. Phys. Rev. Lett. 98(23), 238001 (2007)CrossRefADSGoogle Scholar
  30. 30.
    Olsson, P., Teitel, S.: Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 99(17), 178001 (2007)CrossRefADSGoogle Scholar
  31. 31.
    Rognon, P., Roux, J., Naaim, M., Chevoir, F.: Dense flows of cohesive granular materials. J. Fluid Mech. 596, 21 (2008)CrossRefADSzbMATHGoogle Scholar
  32. 32.
    Dauchot, O., Marty, G., Biroli, G.: Dynamical heterogeneity close to the jamming transition in a sheared granular material. Phys. Rev. Lett. 95(26), 265701 (2005)CrossRefADSGoogle Scholar
  33. 33.
    Toninelli, C., Wyart, M., Berthier, L., Biroli, G., Bouchaud, J.P.: Dynamical susceptibility of glass formers: contrasting the predictions of theoretical scenarios. Phys. Rev. E 71(4), 041505 (2005)CrossRefADSGoogle Scholar
  34. 34.
    Candelier, R., Dauchot, O., Biroli, G.: Building blocks of dynamical heterogeneities in dense granular media. Phys. Rev. Lett. 102(8), 088001 (2009). doi: 10.1103/PhysRevLett.102.088001 CrossRefADSGoogle Scholar
  35. 35.
    Keys, A., Abate, A., Glotzer, S., Durian, D.: Measurement of growing dynamical length scales and pre-diction of the jamming transition in a granular material. Nat. Phys. 3(4), 260 (2007)CrossRefGoogle Scholar
  36. 36.
    Heussinger, C., Chaudhuri, P., Barrat, J.L.: Fluctuations and correlations during the shear flow of elastic particles near the jamming transition. Soft Matter 6(13), 3050 (2010)CrossRefADSGoogle Scholar
  37. 37.
    Marmottant, P., Raufaste, C., Graner, F.: Discrete rearranging disordered patterns, part II: 2D plasticity, elasticity and flow of a foam. Phys. Rev. E 25(4), 371 (2008)Google Scholar
  38. 38.
    Brito, C., Wyart, M.: Heterogeneous dynamics, marginal stability and soft modes in hard sphere glasses. J. Stat. Mech. Theor. Exp. 2007(08), L08003 (2007)CrossRefGoogle Scholar
  39. 39.
    Behringer, R.P., Daniels, K.E., Majmudar, T.S., Sperl, M.: Fluctuations, correlations and transitions in granular materials: statistical mechanics for a non-conventional system. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 366(1865), 493 (2008)CrossRefADSzbMATHMathSciNetGoogle Scholar
  40. 40.
    Liu, A.J., Nagel, S.R.: The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1(1), 347 (2010)CrossRefADSGoogle Scholar
  41. 41.
    Sadarjoen, I.A., Post, F.H., Ma, B., Banks, D.C., Pagendarm, H.G.: Selective visualization of vortices in hydrodynamic flows. In: Visualization’98. Proceedings (IEEE, 1998), pp. 419–422Google Scholar
  42. 42.
    Strawn, R.C., Kenwright, D.N., Ahmad, J.: Computer visualization of vortex wake systems. AIAA J. 37(4), 511 (1999)CrossRefADSGoogle Scholar
  43. 43.
    Degani, D., Seginer, A., Levy, Y.: Graphical visualization of vortical flows by means of helicity. AIAA J. 28(8), 1347 (1990)CrossRefADSGoogle Scholar
  44. 44.
    Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualisation: feature extraction and tracking. In: Computer Graphics Forum (Wiley Online Library, 2003), pp. 775–792Google Scholar
  45. 45.
    MiDi, G.D.R.: On dense granular flows. Euro. Phys. J. E 14, 341 (2004)CrossRefGoogle Scholar
  46. 46.
    Cassar, C., Nicolas, M., Pouliquen, O.: Subma-rine granular flows down inclined planes. Phys. Fluids 17, 103301 (2005)CrossRefADSGoogle Scholar
  47. 47.
    Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media: Between Fluid and Solid. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  48. 48.
    Debrégeas, G., Tabuteau, H., di Meglio, J.: Deformation and flow of a two-dimensional foam under continuous shear. Phys. Rev. Lett. 87, 178305 (2001)CrossRefADSGoogle Scholar
  49. 49.
    Höhler, R., Cohen-Addad, S.: Rheology of liquid foam. J. Phys.: Condens. Matter 17, R1041 (2005)ADSGoogle Scholar
  50. 50.
    Durand, M., Stone, H.: Relaxation time of the topo-logical T1 process in a two-dimensional foam. Phys. Rev. Lett. 97, 226101 (2006)CrossRefADSGoogle Scholar
  51. 51.
    Rognon, P., Gay, C.: Soft dynamics simulation. 2. Elastic spheres undergoing a T1 process in a viscous fluid. Euro. Phys. J. E 30, 291 (2009)CrossRefGoogle Scholar
  52. 52.
    Andreotti, B., Barrat, J.L., Heussinger, C.: Shear flow of non-brownian suspensions close to jamming. Phys. Rev. Lett. 109(10), 105901 (2012)Google Scholar
  53. 53.
    Metzger, B., Rahli, O., Yin, L.: Heat transfer across sheared suspensions: role of the shear-induced diffusion. J. Fluid Mech. 724, 527 (2013)CrossRefADSzbMATHGoogle Scholar
  54. 54.
    Dauchot, O., Durian, D.J., van Hecke, M.: Dynamical heterogeneities in grains and foams. Dyn. Heterog. Glasses Colloids Granular Media 150, 203 (2011)CrossRefGoogle Scholar
  55. 55.
    Cohen-Addad, S., Höhler, R., Pitois, O.: Flow in foams and flowing foams. Annu. Rev. Fluid Mech. 45(1), 241 (2013)CrossRefADSGoogle Scholar
  56. 56.
    Katgert, G., Tighe, B.P., van Hecke, M.: The jamming perspective on wet foams. Soft Matter 9(41), 9739 (2013)CrossRefGoogle Scholar
  57. 57.
    Berthier, L., Biroli, G., Bouchaud, J.P., Cipelletti, L., van Saarloos, W.: Dynamical heterogeneities in glasses, colloids, and granular media. Oxford University Press, Oxford (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Particles and Grains Laboratory, School of Civil EngineeringThe University of SydneySydneyAustralia

Personalised recommendations