Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

3D shape and morphology characterization of sediment particles

  • 535 Accesses

  • 9 Citations


In this work, we developed a method to decipher the shape message imprinted in single sediment particles, a method that would reflect the detail information of surface morphology. It uses 2D mathematical descriptions to restore and characterize 3D shape and surface morphology of sediment particles in terms of the “mathematical sediment”, so as to better understand 3D geometric characteristics reflected by single sediment particles. To prevent the simplification of morphology description and overcome the deficiencies of lower-dimensional characteristics, we proposed a concept of “mathematical sediment” in this paper. The mathematical sediment uses image analysis of scanning electron microscope photographs and complex Fourier shape analysis to describe the planar projection shape of sediment particles and further restore the 3D morphology of sediment particles through a certain combination ways. The shapes of sediment particles are controlled using Fourier coefficients to generate a variety of mathematical sediments with various shapes, which allow the realization of the description and analysis of the 3D morphology of sediment particles. The fractal theory is further used to verify the rationality of mathematical sediment. Compared with the traditional method, the mathematical sediment overcomes the lack of particle system and smooth sphere systems and can reproduce 3D irregular surfaces for the morphology analysis. The rationality verification showed that the complex surface morphology of mathematical sediment is basically similar to the surface morphology of natural sediment. The mathematical sediment can reflect the true surface characteristics of sediment particles. The characteristics of shape properties and surface morphology it conveys are consistent with the natural sediment and can be used as a research basis for the further study both in fresh water and marine.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Durian, D.J., Bideaud, H., Duringer, P., Schröder, A.P., Thalmann, F., Marques, C.M.: What is in a pebble shape. Phys. Rev. Lett. 97, 028001-1–028001-4 (2006)

  2. 2.

    Ali, I.B.H., Lafhaj, Z., Bouassida, M.: Characterization of Tunisian marine sediments in Rades and Gabes harbors. Int. J. Sedim. Res. 29, 391–401 (2014)

  3. 3.

    Behrends, K.F., Ignacio, C.C., Julian, C.D.: Adsorption and affinity of Escherichia coli to different aggregate sizes of a silty clay soil. Int. J. Sediment Res. 28, 535–543 (2013)

  4. 4.

    Wentworth, C.K.: A laboratory and field study of cobble abrasion. J. Geol. 27, 507–521 (1919)

  5. 5.

    Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 40, 443–451 (1932)

  6. 6.

    Sneed, E.D., Folk, R.L.: Pebbles in the Lower Colorado River, Texas: a study in particle morphogenesis. J. Geol. 66, 114–150 (1958)

  7. 7.

    Boggs, S.J.: Principles of Sedimentology and Stratigraphy. Prentice-Hall, Englewood Cliffs (2011)

  8. 8.

    Adamson, A.: Physical Chemistry of Surfaces. Wiley, New York (1990)

  9. 9.

    Durian, D.J., Bideaud, H., Duringer, P., Schröder, A.P., Marques, C.M.: Shape and erosion of pebbles. Phys. Rev. Lett. 75, 021301-1–021301-9 (2007)

  10. 10.

    Camenen, B.: Simple and general formula for the settling velocity of particles. J. Hydraul. Eng. 133, 229–233 (2007)

  11. 11.

    Wang, Y.L., Li, L.Y., Deng, S.Y., Liao, B.H.: Computation of the surface fractal dimension (DS) from micro-images of sediment particles. Environ. Chem. 25, 400–404 (2006)

  12. 12.

    Williams, N.D., Walling, D.E., Leeks, G.J.L.: An analysis of the factors contributing to the settling potential of fine fluvial sediment. Hydrol. Process. 22, 4153–4162 (2008)

  13. 13.

    Bialik, R.J., Czernuszenko, W.: On the numerical analysis of bed-load transport of saltating grains. Int. J. Sediment Res. 28, 413–420 (2013)

  14. 14.

    Malvandi, A., Ganji, D.D., Malvandi, A.: Analytical study on accelerating falling of non-spherical particle in viscous fluid. Int. J. Sediment Res. 29, 423–430 (2014)

  15. 15.

    Righetti, M., Lucarelli, C.: Resuspension phenomena of benthic sediment: the role of cohesion and biological adhesion. River Res. Appl. 26, 404–413 (2009)

  16. 16.

    Fang, H.W., Shang, Q.Q., Chen, M.H., He, G.J.: Changes in the critical erosion velocity for sediment colonized by biofilm. Sedimentology 61, 648–659 (2014)

  17. 17.

    Shang, Q.Q., Fang, H.W., Zhao, H.M., He, G.J., Cui, Z.H.: Biofilm effects on size gradation, drag coefficient and settling velocity of sediment particles. Int. J. Sediment Res. 29, 471–480 (2014)

  18. 18.

    Pena, A.A., Garcia-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granular Matter 9, 279–291 (2007)

  19. 19.

    Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulation of triaxial tests. Granular Matter 11, 221–236 (2009)

  20. 20.

    Stahl, M., Konietzky, H.: Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granular Matter 13, 417–428 (2011)

  21. 21.

    Fang, H.W., Chen, M.H., Chen, Z.H., Zhao, H.M., He, G.J.: Effects of sediment particle morphology on adsorption of phosphorus elements. Int. J. Sediment Res. 28, 246–253 (2013)

  22. 22.

    Giovanni, D.F., Renato, T., Gabriella, D.M., Sara, I., Simone, S., Michael, P.I.: Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. Cont. Shelf Res. 30, 1941–1950 (2010)

  23. 23.

    Roth, A.E., Marques, C.M., Durian, D.J.: Abrasion of flat rotating shapes. Phys. Rev. E 83, 031303-1–031303-3 (2011)

  24. 24.

    Thomas, M.C., Wiltshire, R.J., Williams, A.T.: The use of Fourier descriptors in the classification of particle shape. Sedimentology 42, 635–645 (1995)

  25. 25.

    Ehrlich, R., Weinberg, B.: An exact method for characterization of grain shape. J. Sediment. Res. 40, 205–212 (1970)

  26. 26.

    Charpentier, I., Sarocchi, D., Sedano, L.: Particle shape analysis of volcanic clast samples with the Matlab tool Morpheo. Comput. Geosci. 51, 172–181 (2013)

  27. 27.

    Marr, D., Nishihara, H.: Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. Lond. 200, 269–294 (1978)

  28. 28.

    Weaver, J.: Applications of Discrete and Continuous Fourier Analysis. Wiley, New York (1983)

  29. 29.

    Pete, E.L.: Fourier Descriptors and Their Applications in Biology. Cambridge University Press, Cambridge (1997)

  30. 30.

    Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31, 983–1001 (1998)

  31. 31.

    Meloy, T.P.: Fast Fourier transform applied to shape analysis of particle silhouettes to obtain morphological data. Powder Technol. 17, 27–35 (1977)

  32. 32.

    Bowman, E.T., Soga, K., Drummond, W.: Particle shape characterization using Fourier descriptor analysis. Geotechnique 51, 545–554 (2001)

  33. 33.

    Garboczi, E.J.: Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: application to aggregates used in concrete. Cem. Concret. Res. 32(10), 1621–1638 (2002)

  34. 34.

    Das, N.: Modeling three-dimensional shape of sand grains using discrete element method, p. 149. Ph.D. Thesis. University of South Florida (2007)

  35. 35.

    Mandelbrot, B.: Les Objets Fractals: Forme, Hasard, et Dimension. World Publishing Company, Beijing (1999)

  36. 36.

    Jun, K.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)

  37. 37.

    Li, S.G.: Fractal. Higher Education Press, Beijing (2004)

  38. 38.

    Fang, H.W., Chen, M.H., Chen, Z.H.: Surface pore tension and adsorption characteristics of polluted sediment. Sci. China Ser. G Phys. Mech. Astron. 51, 1022–1028 (2008)

  39. 39.

    Ikuo, A., Seiiti, K., Tatuo, I.: Adsorption Science. Chemical Industry Press, Beijing (2005)

  40. 40.

    Fang, H.W., Chen, M.H., Chen, Z.H.: The Characteristics and Model of Environmental Sediment Surface. Science Press, Beijing (2009)

Download references


This work was supported by the National Natural Science Fund of China (Nos. 51479213 and 51379225) and the Open Research Fund Program of State key Laboratory of Hydroscience and Engineering (No. sklhse-2014-B-01).

Author information

Correspondence to Hui Ming Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, H.W., Zhao, H.M., Chen, Z.H. et al. 3D shape and morphology characterization of sediment particles. Granular Matter 17, 135–143 (2015). https://doi.org/10.1007/s10035-014-0545-x

Download citation


  • 3D shape and morphology characterization
  • Mathematical sediment
  • Fourier shape analysis
  • Sediment particles
  • Fractal dimension