Granular Matter

, Volume 17, Issue 1, pp 73–82 | Cite as

Probing the validity of an effective-one-particle description of granular dampers in microgravity

  • Achim Sack
  • Michael Heckel
  • Jonathan E. Kollmer
  • Thorsten Pöschel
Original Paper


We consider the attenuation of the oscillation of a flat spring due to the action of a granular damper. The efficiency of the damper is quantified by evaluating the position of the oscillator as a function of time using a Hall effect based position sensor. Performing experiments for a large abundance of parameters under conditions of microgravity, we confirm a recent theory for granular damping (Kollmer et al. in New J Phys 15:093023, 2013) and show that the theory remains approximately valid even beyond the limits of its derivation.


Granular systems Vibration damping Dissipation 



The European Space Agency (ESA) and the German Aerospace Center (DLR) are gratefully acknowledged for funding the parabolic flights. We thank the German Science Foundation (DFG) for support through the Cluster of Excellence ’Engineering of Advanced Materials’.


  1. 1.
    Kollmer, J.E., Sack, A., Heckel, M., Pöschel, T.: Relaxation of a spring with an attached granular damper. New J. Phys. 15, 093023 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Renard, S., Salueña, C., Schwager, T., Pöschel, T.: Vertically shaken column of spheres. Onset of fluidization. Eur. Phys. J. E 4, 233 (2000)CrossRefGoogle Scholar
  3. 3.
    Pöschel, T., Schwager, T., Salueña, C.: Onset of fluidization in vertically shaken granular material. Phys. Rev. E 62, 1361 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Heckel, M., Sack, A., Kollmer, J.E., Pöschel, T.: Fluidization of a horizontally driven granular monolayer. Preprint (2014)Google Scholar
  5. 5.
    Murdoch, N., Rozitis, B., Nordstrom, K., Green, F., Michel, P., de Lophem, T.-L., Losert, W.: Granular convection in microgravity. Phys. Rev. Lett. 110, 018307 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Murdoch, N., Rozitis, B., Green, F., de Lophem, T.-L., Michel, P., Losert, W.: Granular shear flow in varying gravitational environments. Granul. Matter 15, 129–137 (2013)CrossRefGoogle Scholar
  7. 7.
    Falcon, E., Wunenburger, R., Evesque, P., Fauve, S., Chabot, C., Garrabos, Y., Beysens, D.: Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys. Rev. Lett. 83, 440 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Tatsumi, S., Murayama, Y., Hayakawa, H., Sanoi, M.: Experimental study on the kinetics of granular gases under microgravity. J. Fluid Mech. 641, 521 (2009)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Grasselli, Y., Bossis, G., Goutallier, G.: Velocity-dependent restitution coefficient and granular cooling in microgravity. Europhys. Lett. 86, 60007 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Harth, K., Kornek, U., Trittel, T., Strachauer, U., Höme, S., Will, K., Stannarius, R.: Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110, 144102 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, Y.-P., Evesque, P., Hou, M.-Y.: Breakdown of energy equipartition in vibro-fluidized granular media in micro-gravity. Chin. Phys. Lett. 29, 074501 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Hou, M., Liu, R., Zhai, G., Sun, Z., Lu, K., Garrabos, Y., Evesque, P.: Velocity distribution of vibration-driven granular gas in Knudsen regime in microgravity. Microgravity Sci. Technol. 20, 73 (2008)CrossRefGoogle Scholar
  13. 13.
    Leconte, M., Garrabos, Y., Falcon, E., Lecoutre-Chabot, C., Palencia, F., Evesque, P., Beysens, D.: Microgravity experiments on vibrated granular gases in a dilute regime: non-classical statistics. J. Stat. Mech. 2006(07), P07012 (2006)CrossRefGoogle Scholar
  14. 14.
    Zeng, X., Agui, J.H., Nakagawa, M.: Wave velocities in granular materials under microgravity. J. Aerospace Eng. 20, 116 (2007)CrossRefGoogle Scholar
  15. 15.
    Kielb, R., Macri, F.G., Oeth, D., Nashif, A.D., Macioce, P., Panossian, H., and Lieghley, F.L Advanced damping systems for fan and compressor blisks. In: Proceedings of the 4th National Turbine Engine High Cycle Fatigue Conference, Monterey, CA (1999)Google Scholar
  16. 16.
    Yu, P., Frank-Richter, S., Börngen, A., Sperl, M.: Monitoring three-dimensional packings in microgravity. Granul. Matter 16, 165 (2014)CrossRefGoogle Scholar
  17. 17.
    Paget, A.L.: Vibration in steam turbine buckets and damping by impacts. Engineering 143, 305–307 (1937)Google Scholar
  18. 18.
    Xia, Z., Liu, X., Shan, Y.: Application of particle damping for vibration attenuation in brake drum. Int. J. Veh. Noise Vib. 7(2), 178–194 (2011)CrossRefGoogle Scholar
  19. 19.
    Heckel, M., Sack, A., Kollmer, J.E., Pöschel, T.: Granular dampers for the reduction of vibrations of an oscillatory saw. Phys. A 391, 4442–4447 (2012)CrossRefGoogle Scholar
  20. 20.
    Norcross, J.C.: Dead-blow hammer head. U.S. Patent No. 3343576 (1967)Google Scholar
  21. 21.
    Ryzhkov, D.I.: Vibration damper for metal cutting. Eng. Dig. 14, 246 (1953)Google Scholar
  22. 22.
    Sommer, R.: Sports equipment for ball games having an improved attenuation of oscillations and kick-back pulses and an increased striking force. U.S. Patent No. 5454562 (1995)Google Scholar
  23. 23.
    Ashley, S.: A new racket shakes up tennis. Mech. Eng. 117, 80–81 (1995)Google Scholar
  24. 24.
    Rocke, R.D., Masri, S.F.: Application of a single-unit impact damper to an antenna structure. Shock Vib. Bull. 39, 1–10 (1969)Google Scholar
  25. 25.
    Simonian, S.S.: Particle beam damper. SPIE 2445, 149–160 (1995)ADSGoogle Scholar
  26. 26.
    Chan, K.W., Liao, W.H., Wang, M.Y., Choy, P.K.: Experimental studies for particle damping on a bond arm. J. Vib. Control 12, 297–312 (2006)CrossRefGoogle Scholar
  27. 27.
    Panossian, H.V.: Structural damping enhancement via non-obstructive particle damping technique. J. Vib. Acoust. 114(1), 101–105 (1992)CrossRefGoogle Scholar
  28. 28.
    Simonian, S.S.: Particle damping applications. In: Collection of Technical Papers -AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 6, 4145–4161 (2004)Google Scholar
  29. 29.
    Sack, A., Heckel, M., Kollmer, J.E., Zimber, F., Pöschel, T.: Energy dissipation in driven granular matter in the absence of gravity. Phys. Rev. Lett. 111, 018001 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Kollmer, J.E., Sack, A., Heckel, M., Zimber, F., Müller, P., Bannerman, M.N., Pöschel, T.: Collective granular dynamics in a shaken container at low gravity conditions. AIP Conf. Proc. 1542, 811 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Marhadi, K.S., Kinra, V.K.: Particle impact damping: effect of mass ratio, material, and shape. J. Sound Vib. 283, 433–448 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Ham, A., Wang, J., Stammer, J.G.: Relationships between particle shape characteristics and macroscopic damping in dry sands. J. Geotech. Geoenv. Eng. 138, 1002 (2012)Google Scholar
  33. 33.
    Sadek, M.M., Mills, B.: Effect of gravity on the performance of an impact damper: aprt 1. Steady-state motion. J. Mech. Eng. Sci. 12, 268–277 (1970)Google Scholar
  34. 34.
    Sadek, M.M., Williams, C.J.H.: Effect of gravity on the performance of an impact damper: Part 2. Stability of vibrational modes. J. Mech. Eng. Sci. 12(4), 278–287 (1970)CrossRefGoogle Scholar
  35. 35.
    Salueña, C., Pöschel, T., Esipov, S.E.: Dissipative properties of vibrated granular materials. Phys. Rev. E 59(4), 4422–4425 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Yang, M.Y.: Development of master desing curves for particle impact dampers. Ph.D thesis, Pennsylvania State University (2003)Google Scholar
  37. 37.
    Bai, X.-M., Keer, L.M., Wang, Q.J., Snurr, R.Q.: Investigation of particle damping mechnaism via particle dynamics simulation. Granul. Matter 11, 417–429 (2009)CrossRefzbMATHGoogle Scholar
  38. 38.
    Sánchez, M., Pugnaloni, L.A.: Effective mass overshoot in single degree of freedom mechanical systems with a aparticle damper. J. Sound Vib. 330(24), 5812–5819 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Sánchez, M., Rosenthal, G., Pugnaloni, L.A.: Universal response of optimal granular damping devices. J. Sound Vib. 331(20), 4389–4394 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Sánchez, M., Carlevaro, C.M.: Nonlinear dynamic analysis of an optimal particle damper. J. Sound Vib. 332, 2070 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Cui, Z., Wu, J.H., Chen, H., Li, D.: A quantitaive analysis on the energy dissipation mechanism of the non-obstructive particle damping technology. J. Sound Vib. 330, 2449–2456 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Bannerman, M.N., Kollmer, J.E., Sack, A., Heckel, M., Müller, P., Pöschel, T.: Movers and shakers: granular damping in microgravity. Phys. Rev. E 84, 011301 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Salueña, C., Esipov, S.E., Pöschel, T., Simonian, S.: Dissipative properties of granular ensembles. SPIE 3327, 23 (1998)ADSGoogle Scholar
  44. 44.
    Opsomer, E., Ludewig, F., Vandewalle, N.: Phase transitions in vibrated granular systems in microgravity. Phys. Rev. E 84, 051306 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  46. 46.
    Luding, S. (1994) Models and Simulations of Granular Materials. PhD thesis, Universität FreiburgGoogle Scholar
  47. 47.
    iC Haus, Bodenheim, Germany.: ML datasheet A3 en, Rev A3 edition (2014)Google Scholar
  48. 48.
    Kollmer, J.E., Tupy, M., Heckel, M., Sack, A., Pöschel, T.: Absence of subharmonic response in vibrated granular systems. Preprint (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Achim Sack
    • 1
  • Michael Heckel
    • 1
  • Jonathan E. Kollmer
    • 1
  • Thorsten Pöschel
    • 1
  1. 1.Institute for Multiscale SimulationUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations