Advertisement

Granular Matter

, Volume 16, Issue 6, pp 911–920 | Cite as

Comparison of different capillary bridge models for application in the discrete element method

  • Anton GladkyyEmail author
  • Rüdiger Schwarze
Original Paper

Abstract

Weakly wetted granular material is the subject of many studies. Several formulations were proposed to calculate the capillary forces between wet particles. In this paper some of such models have been implemented in a DEM-framework, and simulation results were compared to experimental measurements. Also, the influence of capillary model type on macro parameters like local shear viscosity and cohesive parameters of sheared material have been investigated through the simulation of spherical beads using a DEM-model of a split-bottom shear-cell. It was concluded that the water content, simulated with the help of capillary bridge models, changes the macro-properties of the simulated granular material. Different capillary bridge models do not influence the macroscopic results visibly.

Keywords

Granular material DEM Capillary bridge models  Liquid bridges 

Notes

Acknowledgments

Special thanks go to Stefan Luding and our partners at TU Dortmund and UTwente in this project for the helpful discussion.

Disclosure The authors express their thanks to the Deutsche Forschungsgemeinschaft, which supported this work within the DFG/STW project SCHW 1168/6-1 “Hydrodynamic theory of wet particle systems”.

References

  1. 1.
    Fenistein, D., van de Meent, J.W., van Hecke, M.: Universal and wide shear zones in granular bulk flow. Phys. Rev. Lett. 92, 094,301 (2004). doi: 10.1103/PhysRevLett.92.094301
  2. 2.
    Fenistein, D., van de Meent, J.W., van Hecke, M.: Core precession and global modes in granular bulk flow. Phys. Rev. Lett. 96, 118,001 (2006)CrossRefGoogle Scholar
  3. 3.
    Gabrieli, F., Lambert, P., Cola, S., Calvetti, F.: Micromechanical modelling of erosion due to evaporation in a partially wet granular slope. Int. J Numer. Anal. Methods Geomech. 36(7), 918–943 (2012)CrossRefGoogle Scholar
  4. 4.
    Gan, Y., Maggi, F., Buscarnera, G., Einav, I.: A particle-water based model for water retention hysteresis (preprint) arXiv:1307.5372 (2013)
  5. 5.
    Herminghaus, S.: Dynamics of wet granular matter. Adv. Phys. 54(3), 221–261 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Iveson, S.M., Litster, J.D., Hapgood, K., Ennis, B.J.: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117(1), 3–39 (2001)CrossRefGoogle Scholar
  7. 7.
    Lambert, P.: Capillary forces in microassembly: modeling, simulation, experiments, and case study. Springer, Berlin (2007)CrossRefGoogle Scholar
  8. 8.
    Lambert, P., Chau, A., Delchambre, A., Régnier, S.: Comparison between two capillary forces models. Langmuir 24(7), 3157–3163 (2008)CrossRefGoogle Scholar
  9. 9.
    Lambert, P., Regnier, S.: Surface and contact forces models within the framework of microassembly. J. Micromechatron. 3(2), 123–158 (2004)CrossRefGoogle Scholar
  10. 10.
    Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161(1), 138–147 (1993)CrossRefGoogle Scholar
  11. 11.
    Liu, P., Yang, R., Yu, A.: Dynamics of wet particles in rotating drums: effect of liquid surface tension. Phys. Fluids 23, 013,304 (2011)CrossRefGoogle Scholar
  12. 12.
    Luding, S., Alonso-Marroquín, F.: The critical-state yield stress (termination locus) of adhesive powders from a single numerical experiment. Granul. Matter 13(2), 109–119 (2011)CrossRefGoogle Scholar
  13. 13.
    Mani, R., Kadau, D., Herrmann, H.J.: Liquid migration in sheared unsaturated granular media. Granul. Matter 15(4), 447–454 (2013)Google Scholar
  14. 14.
    Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55(1–2), 1–45 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Pietsch, W., Rumpf, H.: Haftkraft, kapillardruck, flüssigkeitsvolumen und grenzwinkel einer flüssigkeitsbrücke zwischen zwei kugeln. Chem. Ing. Tech. 39(15), 885–893 (1967). doi: 10.1002/cite.330391502 CrossRefGoogle Scholar
  16. 16.
    Pournin, L., Liebling, T.M., Mocellin, A.: Molecular-dynamics force models for better control of energy dissipation in numerical simulations of dense granular media. Phys. Rev. E 65(1), 011,302 (2001)CrossRefGoogle Scholar
  17. 17.
    Rabinovich, Y.I., Esayanur, M.S., Moudgil, B.M.: Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir 21(24), 10,992–10,997 (2005). Eng.Google Scholar
  18. 18.
    Radjai, F., Dubois, F.: Discrete-Element Modeling of Granular Materials. Wiley, New York (2011)Google Scholar
  19. 19.
    Radl, S., Kalvoda, E., Glasser, B.J., Khinast, J.G.: Mixing characteristics of wet granular matter in a bladed mixer. Powder Technol. 200(3), 171–189 (2010)CrossRefGoogle Scholar
  20. 20.
    Luding, S.: The effect of friction on wide shear bands. Part. Sci. Technol. 26(1), 33–42 (2008). http://doc.utwente.nl/80351/
  21. 21.
    Sakaie, K., Fenistein, D., Carroll, T.J., van Hecke, M., Umbanhowar, P.: MR imaging of Reynolds dilatancy in the bulk of smooth granular flows. EPL Europhys. Lett. 84(3), 38001 (2008). http://stacks.iop.org/0295-5075/84/i=3/a=38001
  22. 22.
    Scholtès, L., Hicher, P.Y., Nicot, F., Chareyre, B., Darve, F.: On the capillary stress tensor in wet granular materials. Int. J. Numer. Anal. Methods Geomech. 33(10), 1289–1313 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Schwager, T., Pöschel, T.: Coefficient of restitution and linear-dashpot model revisited. Granul. Matter 9(6), 465–469 (2007). doi: 10.1007/s10035-007-0065-z CrossRefGoogle Scholar
  24. 24.
    Schwarze, R., Gladkyy, A., Uhlig, F., Luding, S.: Rheology of weakly wetted granular materials: a comparison of experimental and numerical data. Granul. Matter 15(4), 455–465 (2013). doi: 10.1007/s10035-013-0430-z CrossRefGoogle Scholar
  25. 25.
    Soulie, F., Cherblanc, F., El Youssoufi, M.S., Saix, C.: Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int. J. Numer. Anal. Methods Geomech. 30(3), 213–228 (2006) Google Scholar
  26. 26.
    Weigert, T., Ripperger, S.: Calculation of the liquid bridge volume and bulk saturation from the half-filling angle. Part. Part. Syst. Charact. 16(5), 238–242 (1999). doi: 10.1002/(SICI)1521-4117(199910)16:5<238:AID-PPSC238>3.0.CO;2-E
  27. 27.
    Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000). doi: 10.1021/la000657y CrossRefGoogle Scholar
  28. 28.
    Zhu, H., Zhou, Z., Yang, R., Yu, A.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007)CrossRefGoogle Scholar
  29. 29.
    šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtés, L., Sibille, L., Stránský, J., Thoeni, K.: Yade Documentation, 1st edn. The Yade Project (2010). http://yade-dem.org/doc/

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Mechanics and Fluid DynamicsTU Bergakademie FreibergFreibergGermany

Personalised recommendations