Granular Matter

, Volume 16, Issue 4, pp 597–608 | Cite as

Stress, stress-asymmetry and contact moments in granular matter

Original Paper


The physical nature of contact moments within granular assemblies is reviewed and a new approach is developed for the homogenisation of stress within these materials. This approach revolves around capturing the effects of contact moments through the concept of contact eccentricity. By this method it is possible to calculate an expression for bulk stress that is both symmetric for material in equilibrium and fully consistent with the usual definition of bulk stress as an ensemble average of material stress over a representative volume element. The technique is demonstrated in a simple two dimensional example, as well as a larger scale discrete element modelling simulation of a steady state direct shear experiment.


Homogenisation of granular materials  Stress asymmetry  Couple stress Cosserat continuum Contact moments Rolling friction 



The Author is indebted to Dr. Ian Benn of the School of Science and IT at the University of Newcastle for his assistance in resolving a key mathematical issue in the work. This work is supported by the Australian Research Council through their Discovery Project Grant Scheme (DP130104290).


  1. 1.
    Ai, J., Chen, J.-F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206, 269–282 (2011)CrossRefGoogle Scholar
  2. 2.
    Alonso-Marroquin, F.: Static equations of the Cosserat continuum derived from intra-granular stresses. Granul. Matter 13, 189–196 (2011)CrossRefGoogle Scholar
  3. 3.
    Bagi, K.: Stress and strain in granular assemblies. Mech. Mater. 22, 165 (1996)CrossRefGoogle Scholar
  4. 4.
    Bagi, K.: Discussion on ‘The asymmetry of stress in granular media’ By J Bardet and I Vardoulakis. Int. J. Solids Struct. 40, 1329 (2003)CrossRefGoogle Scholar
  5. 5.
    Bardet, J., Vardoulakis, I.: The asymmetry of stress in granular media. Int. J. Solids Struct. 38, 353 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Bardet, J., Vardoulakis, I.: Reply to discussion by Dr. Katalin Bagi. Int. J. Solids Struct. 40, 1035 (2003)CrossRefGoogle Scholar
  7. 7.
    Bardet, J., Vardoulakis, I.: Reply to Dr. Kuhn’s discussion. Int. J. Solids Struct. 40, 1809 (2003)CrossRefGoogle Scholar
  8. 8.
    Chang, C.S., Ma, L.: Modelling of discrete granulates as micropolar continua. J. Eng. Mech. 116, 2703–2721 (1990)CrossRefGoogle Scholar
  9. 9.
    Chang, C.S., Kuhn, M.R.: On virtual work and stress in granular media. Int. J. Solids Struct. 42, 3773–3793 (2005)CrossRefMATHGoogle Scholar
  10. 10.
    Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.: A micromechanical description of granular material behaviour. J. Appl. Mech. 48, 339 (1981)ADSCrossRefMATHGoogle Scholar
  11. 11.
    Cosserat, E., Cosserat, F.: Theorie des corps deformables. A Hermann, Paris (1909)Google Scholar
  12. 12.
    de Saxce, G., Fortin, J., Millet, O.: About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor. Mech. Mater. 36, 1175–1184 (2004)CrossRefGoogle Scholar
  13. 13.
    Ebrahimian, B., Bauer, E.: Numerical simulation of the effect of interface friction of a bounding structure on shear deformation in a granular soil. Int. J. Numer. Anal. Meth. Geomech. 36, 1486–1506 (2012)CrossRefGoogle Scholar
  14. 14.
    Edwards, S.F., Grinev, D.V.: Statistical mechanics of stress transmission in disordered granular arrays. Phys. Rev. Lett. 82, 5397 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Ehlers, W.: Homogenisation of discrete media towards micropolar continua: A computational approach. In: Proceedings of IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows, pp. 306–313 (2010)Google Scholar
  16. 16.
    Ehlers, W., Ramm, E., Diebels, S., D’Addetta, G.A.: From particle ensembles to Cosserat continua: Homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702 (2003)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Eringen, A.C.: Microcontinuum Field Theories: Foundations and Solids. Springer, New York (1999)CrossRefMATHGoogle Scholar
  18. 18.
    Fortin, J., Millet, O., de Saxce, G.: Construction of an averaged stress tensor for a granular medium. Eur. J. Mech. A/Solids 22, 567 (2003)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Froiio, F., Tomassetti, G., Vardoulakis, I.: Mechanics of granular materials: The discrete and the continuum descriptions juxtaposed. Int. J. Solids Struct. 43, 7684 (2006)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Goddard, J.D.: From granular matter to generalised continuum. In: Capriz, G., Giovine, P., Mariano, P. (eds.) Mathematical models of granular matter: Lecture notes in Mathematics. Springer, Berlin (2007)Google Scholar
  21. 21.
    Goldhirsch, I.: Stress, stress asymmetry and couple stress: From discrete particles to continuous Fields. Granul. Matter 12, 239 (2010)CrossRefMATHGoogle Scholar
  22. 22.
    Huang, W., Bauer, E.: Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Meth. Geomech. 27, 325–352 (2003)CrossRefMATHGoogle Scholar
  23. 23.
    Kruyt, N.P.: Statics and kinematics of discrete Cosserat type granular materials. Int. J. Solids Struct. 40, 511–534 (2003)CrossRefMATHGoogle Scholar
  24. 24.
    Kuhn, M.: Discussion on ‘The asymmetry of stress in granular media’ By J Bardet and I Vardoulakis. Int. J. Solids Struct. 40, 1805 (2003)CrossRefGoogle Scholar
  25. 25.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927) Google Scholar
  26. 26.
    Luding, S.: Macroscopic stress from dynamic, rotating granular media. In: IUTAM-ISIMM Symposium on Mathematical Modelling and Physical Instances of Granular Flows. AIP Conf. Proc. vol. 1227, pp. 208–213 (2010)Google Scholar
  27. 27.
    Mehrabadi, M.M., Nemat-Nasser, S., Oda, M.: On statistical description of stress and fabric in granular materials. Int. J. Num. Anal. Meth. Geomech. 6, 95–108 (1982)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Mueller, G.E.: Radial void fraction distributions in randomly packed beds of uniformly sized spheres in cylindrical containers. Powder Technol. 72, 269–275 (1992)CrossRefGoogle Scholar
  29. 29.
    Nicot, F., Hadda, N., Guessasma, M., Fortin, J., Millet, O.: On the definition of the stress tensor in granular media. Int. J. Solids Struct. 50, 2508–2517 (2013)CrossRefGoogle Scholar
  30. 30.
    Oda, M.: Particle rotation and couple stress. In: Oda, M., Iwashita, K. (eds.) Mechanics of granular materials: An introduction, pp. 19–27. Balkema, Rotterdam (1999)Google Scholar
  31. 31.
    Oda, M., Iwashita, K.: Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38, 1713–1740 (2000)CrossRefGoogle Scholar
  32. 32.
    PFC3D 4.00 User Manual, Itasca Consultants (2011)Google Scholar
  33. 33.
    Satake, M.: Fundamental quantities in the graph approach to granular materials. In: Jenkins, J., Satake, M. (eds.) Mechanics of granular materials: New models and constitutive relations, pp. 9–19. Elsevier Science, Amsterdam (1983)Google Scholar
  34. 34.
    Tejchman, J.: Effect of fluctuation of current void ratio on the shear zone formation in granular bodies within micro-polar hypoplasticity. Comput. Geotech. 33, 29–46 (2006)CrossRefGoogle Scholar
  35. 35.
    Vardoulakis, I., Unterreiner, P.: Interfacial localisation in simple shear tests on a granular medium modelled as a Cosserat continuum. In: Studies of Applied Mechanics, vol. 42: Mechanics of Geomaterial Interfaces, pp. 487–512. Elsevier Science (1995)Google Scholar
  36. 36.
    Weber, J.: Recherches concernant les contraintes intergranulaires dans les milieux pulverulents. Bulletin de Liaison Phisique et Chimie 20, 3–1 (1966)ADSGoogle Scholar
  37. 37.
    Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granul. Matter 14, 289 (2012)CrossRefGoogle Scholar
  38. 38.
    Wensrich, C.M., Katterfeld, A., Sugo, D.: Characterisation of the effects of particle Shape using a normalised contact eccentricity. Granul. Matter (2013) (Accepted Aug 2013)Google Scholar
  39. 39.
    Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012)Google Scholar
  40. 40.
    Wensrich, C.M.: Boundary structure in dense random packing of monosize spherical particles. Powder Technol. 219, 118–127 (2012)CrossRefGoogle Scholar
  41. 41.
    Wensrich, C.M., Kisi, E.H., Luzin, V.: Non-contact stress measurement in granular materials via neutron and X-ray diffraction: Theoretical foundations. Granul. Matter 15, 275–286 (2013)CrossRefGoogle Scholar
  42. 42.
    Zhu, H.P., Yu, A.B.: A theoretical analysis of the force models in discrete element method. Powder Technol. 161, 122–129 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of EngineeringUniversity of NewcastleNewcastleAustralia

Personalised recommendations