Advertisement

Granular Matter

, Volume 16, Issue 2, pp 269–274 | Cite as

Experimental investigation of bidensity slurries on an incline

  • Sungyon Lee
  • Aliki Mavromoustaki
  • Gilberto Urdaneta
  • Kaiwen Huang
  • Andrea L. Bertozzi
Original Paper

Abstract

We investigate the dynamics of bidensity slurries on an incline. The particle-fluid mixture consists of two species of negatively buoyant particles that have roughly the same size but significantly variant densities. This mismatch in particle densities induces or prevents settling depending on the relative amount of heavy to light particles, leading to complex regimes also found in the monodisperse case. In addition, when settling effects dominate within the thin film, we observe the phase separation down the incline between the particles and the liquid, as well as between two particle types.

Keywords

Particle-laden flow Thin films Bidisperse slurries Shear-induced migration Particle segregation 

Notes

Acknowledgments

The authors would like to thank K. Allison, T. Crawford, S. Meguerdijian, and W. Rosenthal for their preliminary work on the bidensity experiments and image processing. This work was supported by UC Lab Fees Research Grant 09-LR-04-116741-BERA and NSF Grants DMS-1312543, DMS-1048840 and DMS-1045536.

References

  1. 1.
    Zhou, J.J., Dupuy, B., Bertozzi, A.L., Hosoi, A.E.: Theory for shock dynamics in particle-laden thin films. Phys. Rev. Lett. 94, 117803 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Cook, B.P.: Theory for particle settling and shear-induced migration in thin-film liquid flow. Phys. Rev. E 78, 045303 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Murisic, N., Ho, J., Hu, V., Latterman, P., Koch, T., Lin, K., Mata, M., Bertozzi, A.L.: Particle-laden viscous thin-film flows on an incline: experiments compared with an equilibrium theory. Physica D: Nonlin phenomena, 240 (2011)Google Scholar
  4. 4.
    Murisic, N., Pausader, B., Peschka, D., Bertozzi, A.L.: Dynamics of particle settling and resuspension in viscous liquid films. J. Fluid Mech. 717, 203–231 (2013)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ward, T., Wey, C., Gilden, R., Hosoi, A.E., Bertozzi, A.L.: Experimental study of gravitation effects in the flow of a particle-laden thin film on an inclined plane. Phys. Fluids 21, 083305 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Ancey, C., Andreini, N., Epely-Chauvin, G.: The dam-break problem for concentrated suspensions of neutrally buoyant particles. J. Fluid Mech. 724, 95–122 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Katz, O., Aharonov, E.: Landslides in vibrating sand box: what controls types of slope failure and frequency magnitude relations? Earth Planet. Sci. Lett. 247, 280–294 (2006) Google Scholar
  8. 8.
    Klar, A., Aharonov, E., Kalderon, B., Katz, O.: Analytical and observational relations between landslides volume and surface area. J. Geophys. Res. 116(FO2001), 1–10 (2011)Google Scholar
  9. 9.
    Whitmore, R.L.: The sedimentation of suspensions of spheres. Br. J. Appl. Phys. 6(7), 239 (1955)ADSCrossRefGoogle Scholar
  10. 10.
    Weiland, R.H., McPherson, R.R.: Accelerated settling by addition of buoyant particles. Ind. & Eng. Chem. Fundam. 18(1), 45–49 (1979)CrossRefGoogle Scholar
  11. 11.
    Weiland, R.H., Fessas, Y.P., Ramarao, B.V.: On instabilities arising during sedimentation of two-component mixtures of solids. J. Fluid Mechan. 142, 383–389 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    Davis, R.H., Acrivos, A.: Sedimentation of noncolloidal particles at low reynolds numbers. Ann. Rev. Fluid Mech. 17, 91 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    Tripathi, Anubhav, Acrivos, Andreas: Viscous resuspension in a bidensity suspension. Int. J. Multiph. Flow 25(1), 1–14 (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lee, S., Stokes, Y.M., Bertozzi, A.L.: A model for particle laden flow in a spiral concentrator. In: Bai, Y., Wang, J., Daining, F. (eds.) 23rd International Congress of Theoretical and Applied Mechanics (ICTAM). Procedia IUTAM (2012)Google Scholar
  15. 15.
    Lee, S., Stokes, Y.M., Bertozzi, A.L.: Particle segregation in spiral channels. Phys. Fluids (2013, submitted)Google Scholar
  16. 16.
    Leighton, D., Acrivos, A.: Shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Phillip, R.J., Armstrong, R.C., Brown, R.C., Graham, A.L., Abbott, J.R.: A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4, 30 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Mavromoustaki, A., Bertozzi, A.L.: Hyperbolic systems of conservation laws in gravity-driven, particle-laden thin-film flows. J. Eng. Math. (2014, accepted)Google Scholar
  19. 19.
    Wang, L., Bertozzi, A.L.: Shock solutions for high concentration particle-laden thin films. SIAP (2013)Google Scholar
  20. 20.
    Brady, J.F., Bossis, G.: The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155, 105–129 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sungyon Lee
    • 1
  • Aliki Mavromoustaki
    • 1
  • Gilberto Urdaneta
    • 1
  • Kaiwen Huang
    • 1
  • Andrea L. Bertozzi
    • 1
  1. 1.UCLA Mathematics DepartmentLos AngelesUSA

Personalised recommendations