Granular Matter

, Volume 16, Issue 1, pp 141–150 | Cite as

Plane wave propagation in 2D and 3D monodisperse periodic granular media

  • Mohith Manjunath
  • Amnaya P. Awasthi
  • Philippe H. Geubelle
Original Paper


Plane wave propagation in periodic ordered granular media comprising of elastic spherical particles is investigated. The spheres are under zero precompression and are assumed to interact via the Hertzian contact potential. Various two- and three-dimensional granular structures such as hexagonal packing (2D and 3D), face-centered cubic and body-centered cubic packings are considered in the present study, with the plane impact either normal or oblique to the granular system. For the normal impact case, 1D chains equivalent to the 2D and 3D structures are obtained. A universal relation between the wavefront speed and the force amplitude is derived, valid for all the granular structures studied. In the angular impact case, the shear component of the amplitude of the particle velocity is found to initially decay exponentially and further in a series of linear regimes. By employing simpler models, semi-analytical predictions are obtained for the decay of shearing effect.


Granular media Plane wave propagation Hertzian contact Solitary wave 



The authors thank the US Army Research Office (ARO) for the financial support through the Multi-University Research Initiative Contract Number W911NF-09-1-0436 (Program manager: Dr. David Stepp).


  1. 1.
    Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer Verlag, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefMATHGoogle Scholar
  3. 3.
    Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 733 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E. 56(5), 6104 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E. 72(1), 016603 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96(5), 058002 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. P. Natl. Acad. Sci. USA 107(16), 7230 (2010)Google Scholar
  8. 8.
    Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462(2), 21 (2008)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Doney, R., Sen, S.: Decorated, tapered, and highly nonlinear granular chain. Phys. Rev. Lett. 97(15), 155502 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Job, S., Melo, F., Sokolow, A., Sen, S.: Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter. 10(1), 13 (2007)CrossRefMATHGoogle Scholar
  11. 11.
    Nakagawa, M., Agui, J. H., Wu, D.T., Extramiana, D. V.: Impulse dispersion in a tapered granular chain. Granular Matter. 4(4), 167–174 (2003)Google Scholar
  12. 12.
    Jayaprakash, K., Starosvetsky, Y., Vakakis, A.F.: New family of solitary waves in granular dimer chains with no precompression. Phys. Rev. E. 83(3), 036606 (2011)Google Scholar
  13. 13.
    Hascoët, E., Herrmann, H.J.: Shocks in non-loaded bead chains with impurities. Eur. Phys. J. B. 14(1), 183 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Job, S., Santibanez, F., Tapia, F., Melo, F.: Wave localization in strongly nonlinear Hertzian chains with mass defect. Phys. Rev. E. 80(2), 025602 (2009)Google Scholar
  15. 15.
    Manciu, M., Sen, S., Hurd, A.: Impulse propagation in dissipative and disordered chains with power-law repulsive potentials. Physica D. 157(3), 226 (2001) Google Scholar
  16. 16.
    Ponson, L., Boechler, N., Lai, Y.M., Porter, M.A., Kevrekidis, P.G., Daraio, C.: Nonlinear waves in disordered diatomic granular chains. Phys. Rev. E. 82(2), 021301 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Manjunath, M., Awasthi, A.P., Geubelle, P.H.: Wave propagation in random granular chains. Phys. Rev. E. 85, 031308 (2012)Google Scholar
  18. 18.
    Shukla, A., Damania, C.: Experimental investigations of wave velocity and dynamic contact stresses in an assembly of disks. Exp. Mech. 27(3), 268 (1987)Google Scholar
  19. 19.
    Shukla, A.: Dynamic photoelastic studies of wave propagation in granular media. Opt. Laser. Eng. 14(3), 165 (1991)Google Scholar
  20. 20.
    Leonard, A., Fraternali, F., Daraio, C.: Directional wave propagation in a highly nonlinear square packing of spheres. Exp. Mech. 53(3), 327 (2013)CrossRefGoogle Scholar
  21. 21.
    Leonard, A., Daraio, C.: Stress wave anisotropy in centered square highly nonlinear granular systems. Phys. Rev. Lett. 108, 214301 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Awasthi, A.P., Smith, K.J., Geubelle, P.H., Lambros, J.: Propagation of solitary waves in 2D granular media: a numerical study. Mech. Mater. 54, 100 (2012)CrossRefGoogle Scholar
  23. 23.
    Manjunath, M., Awasthi, A.P., Geubelle, P.H.: Wave propagation in 2D random granular media. Physica D. 266, 42 (2014)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Bourrier, F., Nicot, F., Darve, F.: Physical processes within a 2D granular layer during an impact. Granular Matter. 10(6), 415–437 (2008)Google Scholar
  25. 25.
    Mouraille, O., Luding, S.: Sound wave propagation in weakly polydisperse granular materials. Ultrasonics. 48(6), 498–505 (2008)Google Scholar
  26. 26.
    Chang, C.S., Gao, J.: Non-linear dispersion of plane wave in granular media. Int. J. Nonlin. Mech. 30(2), 111 (1995)Google Scholar
  27. 27.
    Anfosso, J., Gibiat, V.: Elastic wave propagation in a three-dimensional periodic granular medium. Europhys. Lett. 67(3), 376 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Tichler, A.M., Gómez, L.R., Upadhyaya, N., Campman, X., Nesterenko, V.F., Vitelli, V.: Transmission and reflection of strongly nonlinear solitary waves at granular interfaces. Phys. Rev. Lett. 111, 048001 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Leonard, A., Daraio, C., Awasthi, A., Geubelle, P.: Effects of weak disorder on stress-wave anisotropy in centered square nonlinear granular crystals. Phys. Rev. E. 86(3), 031305 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mohith Manjunath
    • 1
  • Amnaya P. Awasthi
    • 1
  • Philippe H. Geubelle
    • 1
  1. 1.Department of Aerospace EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations