Granular Matter

, Volume 16, Issue 2, pp 185–191 | Cite as

Experimental measurements of orientation and rotation of dense 3D packings of spheres

  • Matt Harrington
  • Michael Lin
  • Kerstin N. Nordstrom
  • Wolfgang Losert
Original Paper

Abstract

Many recent advances in the study of granular media have stemmed from the improved capability to image and track individual grains in two and three dimensions. While two-dimensional systems readily yield both translational and rotational motion, a challenge in three-dimensional experiments is the tracking of rotational motion of isotropic particles. We propose an extension of the refractive index matched scanning technique as a method of measuring individual particle rotation. Initial measurements indicate that shear-driven rotational motion may stem from gear-like motion within the shear zone.

Keywords

Rotational motion Three-dimensional imaging Shear-banding Particle tracking Friction 

References

  1. 1.
    Wang, L., Frost, J., Lai, J.: Three-dimensional digital representation of granular material microstructure from x-ray tomography imaging. J. Comput. Civ. Eng. 18, 28 (2004)CrossRefGoogle Scholar
  2. 2.
    Nakagawa, M., Altobelli, S., Caprihan, A., Fukushima, E., Jeong, E.K.: Non-invasive measurements of granular flows by magnetic resonance imaging. Exp. Fluids 16, 54 (1993)CrossRefGoogle Scholar
  3. 3.
    Brujić, J., Edwards, S.F., Hopkinson, I., Makse, H.A.: Measuring the distribution of interdroplet forces in a compressed emulsion system. Physica A 327(3–4), 201 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Dijksman, J.A., Rietz, F., Lőrincz, K.A., van Hecke, M., Losert, W.: Invited article: Refractive index matched scanning of dense granular materials. Rev. Sci. Instr. 83, 011301 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Seidler, G.T., Martinez, G., Seeley, L.H., Kim, K.H., Behne, E.A., Zaranek, S., Chapman, B.D., Heald, S.M., Brewe, D.L.: Granule-by-granule reconstruction of a sandpile from x-ray microtomography data. Phys. Rev. E. 62, 8175 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Aste, T., Saadatfar, M., Senden, T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E. 71, 061302 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Zhou, J., Long, S., Wang, Q., Dinsmore, A.D.: Measurement of forces inside a three-dimensional pile of frictionless droplets. Science 312(5780), 1631 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Richard, P., Philippe, P., Barbe, F., Bourlès, S., Thibault, X., Bideau, D.: Analysis by x-ray microtomography of a granular packing undergoing compaction. Phys. Rev. E. 68, 020301 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Slotterback, S., Toiya, M., Goff, L., Douglas, J.F., Losert, W.: Correlation between particle motion and voronoi-cell-shape fluctuations during the compaction of granular matter. Phys. Rev. Lett. 101, 258001 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Sakaie, K., Fenistein, D., Carroll, T.J., van Hecke, M., Umbanhowar, P.: Mr imaging of reynolds dilatancy in the bulk of smooth granular flows. Europhys. Lett. 84(3), 38001 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Herrera, M., McCarthy, S., Slotterback, S., Cephas, E., Losert, W., Girvan, M.: Path to fracture in granular flows: dynamics of contact networks. Phys. Rev. E. 83, 061303 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Börzsönyi, T., Szabó, B., Törös, G., Wegner, S., Török, J., Somfai, E., Bien, T., Stannarius, R.: Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108, 228302 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Wegner, S., Börzsönyi, T., Bien, T., Rose, G., Stannarius, R.: Alignment and dynamics of elongated cylinders under shear. Soft Matter 8, 10950 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Ehrichs, E.E., Jaeger, H.M., Karczmar, G.S., Knight, J.B., Kuperman, V.Y., Nagel, S.R.: Granular convection observed by magnetic resonance imaging. Science 267(5204), 1632 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Huang, N., Ovarlez, G., Bertrand, F., Rodts, S., Coussot, P., Bonn, D.: Flow of wet granular materials. Phys. Rev. Lett. 94, 028301 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Cheng, X., Lechman, J.B., Fernandez-Barbero, A., Grest, G.S., Jaeger, H.M., Karczmar, G.S., Möbius, M.E., Nagel, S.R.: Three-dimensional shear in granular flow. Phys. Rev. Lett. 96, 038001 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Dijksman, J.A., Wandersman, E., Slotterback, S., Berardi, C.R., Updegraff, W.D., van Hecke, M., Losert, W.: From frictional to viscous behavior: three-dimensional imaging and rheology of gravitational suspensions. Phys. Rev. E. 82, 060301 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Wandersman, E., Dijksman, J.A., van Hecke, M.: Particle diffusion in slow granular bulk flows. Europhys. Lett. 100, 38006 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Slotterback, S., Mailman, M., Ronaszegi, K., van Hecke, M., Girvan, M., Losert, W.: Onset of irreversibility in cyclic shear of granular packings. Phys. Rev. E. 85, 021309 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Hill, K.M., Caprihan, A., Kakalios, J.: Bulk segregation in rotated granular material measured by magnetic resonance imaging. Phys. Rev. Lett. 78, 50 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    Porion, P., Sommier, N., Faugère, A.M., Evesque, P.: Dynamics of size segregation and mixing of granular materials in a 3d-blender by nmr imaging investigation. Powder Technol. 141(1–2), 55 (2004)CrossRefGoogle Scholar
  22. 22.
    Harrington, M., Weijs, J.H., Losert, W.: Suppression and emergence of granular segregation under cyclic shear. Phys. Rev. Lett. 111, 078001 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Nordstrom, K., Lim, E., Harrington, M., Losert, W.: Granular dynamics during impact. ArXiv e-prints (2013)Google Scholar
  24. 24.
    Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Nichol, K., Daniels, K.E.: Equipartition of rotational and translational energy in a dense granular gas. Phys. Rev. Lett. 108, 018001 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Harth, K., Kornek, U., Trittel, T., Strachauer, U., Höme, S., Will, K., Stannarius, R.: Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110, 144102 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Brilliantov, N.V., Pöschel, T., Kranz, W.T., Zippelius, A.: Translations and rotations are correlated in granular gases. Phys. Rev. Lett. 98, 128001 (2007) Google Scholar
  28. 28.
    Bardet, J.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18(2), 159 (1994)CrossRefGoogle Scholar
  29. 29.
    Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by dem. J. Eng. Mech. 124(3), 285 (1998)CrossRefGoogle Scholar
  30. 30.
    Luding, S.: The effect of friction on wide shear bands. Part. Sci. Tech. 26(1), 33 (2007)CrossRefGoogle Scholar
  31. 31.
    Halsey, T.C.: Motion of packings of frictional grains. Phys. Rev. E. 80, 011303 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mech. Mater. 1(4), 269 (1982)CrossRefGoogle Scholar
  33. 33.
    Börzsönyi, T., Szabó, B., Wegner, S., Harth, K., Török, J., Somfai, E., Bien, T., Stannarius, R.: Shear-induced alignment and dynamics of elongated granular particles. Phys. Rev. E. 86, 051304 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Fenistein, D., van Hecke, M.: Kinematics: wide shear zones in granular bulk flow. Nature 425(6955), 256 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Fenistein, D., van de Meent, J.W., van Hecke, M.: Universal and wide shear zones in granular bulk flow. Phys. Rev. Lett. 92, 094301 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Tsai, J.C., Gollub, J.P.: Slowly sheared dense granular flows: crystallization and nonunique final states. Phys. Rev. E. 70(3), 031303 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid. Interf. Sci. 179, 298 (1996)CrossRefGoogle Scholar
  38. 38.
    Lun, C.K.K., Bent, A.A.: Numerical simulation of inelastic frictional spheres in simple shear flow. J. Fluid Mech. 258, 335 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    da Cruz, F., Emam, S., Prochnow, M., Roux, J.N.: Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Phys. Rev. E. 72, 021309 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Zhang, J., Behringer, R.P., Goldhirsch, I.: Coarse-graining of a physical granular system. Prog. Theor. Phys. Suppl. 184, 16 (2010)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matt Harrington
    • 1
  • Michael Lin
    • 1
  • Kerstin N. Nordstrom
    • 1
  • Wolfgang Losert
    • 2
  1. 1.Department of Physics and IREAPUniversity of MarylandCollege ParkUSA
  2. 2.Department of Physics, IPST, and IREAPUniversity of MarylandCollege ParkUSA

Personalised recommendations