Skip to main content
Log in

Micromechanics of elastic buckling of a colloidal polymer layer on a soft substrate: experiment and theory

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We study the buckling instability of a colloidal particle layer adhered to an elastic substrate using an integrated experimental and theoretical approach. Experiments using monodisperse colloid-scale spherical particles made of polystyrene and silica, show that the wavelength of the initial (critical) buckling mode is independent of particle modulus and linearly dependent on particle radius—in contradiction with the predictions of the prevailing continuum model. We developed a granular model of the particle layer using structural mechanics techniques. The granular model predicts the observed wavelength of the initial, critical buckling mode within the estimated range of parameter values for the experiment. The evolution of this mode into the post-buckling regime is examined. Results highlight the crucial role of material discreteness in the mechanical response, and the need for accurate methods of estimating parameters for the particle-scale resistances against buckling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stafford, C.M., Harrison, C., Beers, K.L., Karim, A., Amis, E.J., Vanlandingham, M.R., Kim, H.C., Volksen, W., Miller, R.D., Simonyi, E.E.: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545–550 (2004)

    Article  ADS  Google Scholar 

  2. Volynskii, A., Bazhenov, S., Lebedeva, O., Bakeev, N.: Mechanical buckling instability of thin coatings deposited on soft polymer substrates. J. Mater. Sci. 35(3), 547–554 (2000)

    Article  ADS  Google Scholar 

  3. Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)

    Article  ADS  Google Scholar 

  4. Singamaneni, S., Tsukruk, V.: Buckling instabilities in periodic composite polymeric materials. Soft Matter 6, 5681–5692 (2010)

    Article  ADS  Google Scholar 

  5. Cerda, E., Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003)

    Article  ADS  Google Scholar 

  6. Vella, D., Aussillous, P., Mahadevan, L.: Elasticity of an interfacial particle raft. Europhys. Lett. 68(2), 212–218 (2004)

    Article  ADS  Google Scholar 

  7. Leahy, B.D., Pocivavsek, L., Meron, M., Lam, K.L., Salas, D., Viccaro, P.J., Lee, K.Y.C., Lin, B.: Geometric stability and elastic response of a supported nanoparticle film. Phys. Rev. Lett. 105(5), 058301 (2010)

    Article  ADS  Google Scholar 

  8. Cicuta, P., Vella, D.: Granular character of particle rafts. Phys. Rev. Lett. 102(13), 138302 (2009)

    Article  ADS  Google Scholar 

  9. Tordesillas, A., Lin, Q., Zhang, J., Behringer, R., Shi, J.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59, 265–296 (2011)

    Article  ADS  MATH  Google Scholar 

  10. Tordesillas, A., Zhang, J., Behringer, R.: Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoeng. 4, 3–16 (2009)

    Article  Google Scholar 

  11. Zhang, J., Majmudar, T.S., Tordesillas, A., Behringer, R.P.: Statistical properties of a 2D granular material subjected to cyclic shear. Granul. Matter 12(2), 159–172 (2010)

    Article  Google Scholar 

  12. Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005)

    Article  ADS  Google Scholar 

  13. Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57(4), 706–727 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)

    Article  ADS  Google Scholar 

  15. Majmudar, T., Behringer, R.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  16. Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81(1), 011302 (2010)

    Article  ADS  Google Scholar 

  17. Arévalo, R., Zuriguel, I., Maza, D.: Topology of the force network in the jamming transition of an isotropically compressed granular packing. Phys. Rev. E 81(4), 041302 (2010)

    Google Scholar 

  18. Tordesillas, A., Walker, D.M., Froyland, G., Zhang, J., Behringer, R.P.: Transition dynamics and magic-number-like behavior of frictional granular clusters. Phys. Rev. E 86(1), 011306 (2012)

    Google Scholar 

  19. Mangipudi, V.S., Huang, E., Tirrell, M., Pocius, A.V.: Measurement of interfacial adhesion between glassy polymers using the JKR method. Macromol. Symp. 102(4), 131–143 (1996)

    Google Scholar 

  20. Denkov, N., Velev, O., Kralchevski, P., Ivanov, I., Yoshimura, H., Nagayama, K.: Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8(12), 3183–3190 (1992)

    Article  Google Scholar 

  21. Hunt, G., Tordesillas, A., Green, S., Shi, J.: Force-chain buckling in granular media: a structural mechanics perspective. Philos. Trans. Royal Soc. 368, 249–262 (2010)

    Article  ADS  MATH  Google Scholar 

  22. Tordesillas, A., Hunt, G., Shi, J.: A characteristic length scale in confined elastic buckling of a force chain. Granul. Matter 13, 215–218 (2011)

    Article  Google Scholar 

  23. Thompson, J.M.T., Hunt, G.W.: A General Theory of Elastic Stability. Wiley. New York (1973)

  24. Hunt, G., Hammond, J.: Mechanics of shear banding in a regularized two-dimensional model of a granular medium. Philos. Mag. 92, 3483–3500 (2012)

    Article  ADS  Google Scholar 

  25. Doedel, E., Oldeman, B., AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montreal (2012)

  26. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48, 465–481 (1998)

    Article  Google Scholar 

  27. Rattanadit, K., Bobaru, F., Promratana, K., Turner, J.A.: Force chains and resonant behavior in bending of a granular layer on an elastic support. Mech. Mater. 41(6), 691–706 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We thank our reviewers for their insightful comments and helpful suggestions. A.T., J.S. and D.C. are supported by: US Army Research Office (W911NF-11-1-0175), Australian Research Council (DP120104759) and the Melbourne Energy Institute. A.B.C. and B.J.G. are supported by NSF-EPSCoR (EPS-0814442) and ACS PRF (52062-DNI7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette Tordesillas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tordesillas, A., Carey, D., Croll, A.B. et al. Micromechanics of elastic buckling of a colloidal polymer layer on a soft substrate: experiment and theory. Granular Matter 16, 249–258 (2014). https://doi.org/10.1007/s10035-013-0459-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0459-z

Keywords

Navigation