Granular Matter

, Volume 15, Issue 6, pp 811–826 | Cite as

Experimental and numerical determination of mechanical properties of polygonal wood particles and their flow analysis in silos

  • Fernando Alonso-Marroquín
  • Álvaro Ramírez-Gómez
  • Carlos González-Montellano
  • Nigel Balaam
  • Dorian A. H. Hanaor
  • E. A. Flores-Johnson
  • Yixiang Gan
  • Shumiao Chen
  • Luming Shen
Original Paper


Responding to a lack in the literature, mechanical properties of polygonal wood particles are determined for use in a discrete element model (DEM) for flow analysis in silos, and some methods are proposed for determining such parameters. The parameters arrived at here have also formed part of the input to the SPOLY software, developed in-house to compute the DEM model with spheropolyhedron elements. The model is validated using a 2D physical model, where “prismatic” particles with polygonal cross sections are placed inside a silo with variable aperture and hopper angle. Validation includes comparison of flow-rates computed by SPOLY, displacement profiles, and clogging thresholds with experimental results. The good agreement that emerges will encourage future use of miniature triaxial tests, grain-surface profilometry, inclined slope tests, and numerical analysis of the intragranular stresses—toward a direct construction of the contact-deformation relations required in realistic DEM modelling of particle flow with angular-shaped particles.


Mechanical properties Wood flow Silo Polygonal particle SPOLY software DEM 



The authors acknowledge technical support from Ross Barker and Shiao-Huey Chow in the PIV analysis of interface deformation tests. We sincerely thank David Airey, Jørgen Nielsen, and Celia Lozano Grijalba for their helpful discussions with us. FAM is supported by the CERDS funding scheme.


  1. 1.
    Acevedo, M., Hidalgo, R.C., Zuriguel, I., Maza, D., Pagonabarraga, I.: Influence of the feeding mechanism on deposits of square particles. Phys. Rev. E 87(1), 012202 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Adalian, C., Morlier, P.: “WOOD MODEL” for the dynamic behaviour of wood in multiaxial compression. Eur. J. Wood Wood Prod. 60, 433–439 (2002)CrossRefGoogle Scholar
  3. 3.
    Alonso-Marroquin, F., Luding, S., Herrmann, H.J., Vardoulakis, I.: Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71, 051304 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Alonso-Marroquin, F.: Spheropolygons: a new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. Europhys. Lett. 83, 14001 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Alonso-Marroquín, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11, 317–329 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Balevicius, R., Kacianauskas, R., Mróz, Z., Sielamowicz, I.: Discrete-particle investigation of friction effect in filling and unsteady/steady discharge in three-dimensional wedge-shaped hopper. Powder Technol. 187, 159–174 (2008)CrossRefGoogle Scholar
  7. 7.
    Barletta, D., Berry, R.J., Larsson, S.H., Lestander, T.A., Poletto, M., Ramirez-Gomez, Á.: Can bulk solids best practice techniques for flow characterization and handling equipment design be used reliably for biomass materials? In: CHoPS 2012 7th International Conference for Conveying and Handling of Particulate Solids. Friedrichshafen, Germany (2012)Google Scholar
  8. 8.
    Chung, Y.C.: Discrete element modelling and experimental validation of a granular solid subject to different loading conditions. Ph.D. thesis, University of Edinburgh, Edinburgh (2006)Google Scholar
  9. 9.
    Coetzee, C., Els, D.N.J.: Calibration of discrete element parameters and the modelling of silo discharge and bucket filling. Comput. Electron. Agric. 65, 198–212 (2009)CrossRefGoogle Scholar
  10. 10.
    Dong, H., Moys, M.H.: Measurement of impact behaviour between balls and walls in grinding mills. Miner. Eng. 16, 543–550 (2003)CrossRefGoogle Scholar
  11. 11.
    Dong, H., Moys, M.H.: Experimental study of oblique impacts with initial spin. Powder Technol. 161, 22–31 (2006)CrossRefGoogle Scholar
  12. 12.
    Galindo-Torres, S.A., Alonso-Marroquin, F., Wang, Y.C., Pedroso, D., Castaño, J.M.: Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity. Phys. Rev. E 79(6), 060301 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Galindo-Torres, S.A., Munoz, J.D., Alonso-Marroquin, F.: Minkowski–Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils. Phys. Rev. E 82, 056713 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Galindo-Torres, S.A., Pedroso, D.M.: Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys. Rev. E 81, 061303 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Garcimartín, A., Zuriguel, I., Pugnaloni, L.A., Janda, A.: Shape of jamming arches in two-dimensional deposits of granular materials. Phys. Rev. E 82(3), 031306 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    González-Montellano, C., Ramírez, A., Gallego, E., Ayuga, F.: Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chem. Eng. Sci. 66, 5116–5126 (2011)CrossRefGoogle Scholar
  17. 17.
    González-Montellano, C., Gallego, E., Ramírez-Gómez, Á., Ayuga, F.: Three- dimensional discrete element models for simulating the filling and emptying of silos:Analysis of numerical results. Comput. Chem. Eng. 40, 22–32 (2012)CrossRefGoogle Scholar
  18. 18.
    Gorham, D.A., Kharaz, A.H.: The measurement of particle rebound characteristics. Powder Technol. 112, 193–202 (2000)CrossRefGoogle Scholar
  19. 19.
    Härtl, J., Ooi, J.Y., Theuerkauf, J.: A numerical study of the influence of particle friction and wall friction on silo flow. In: Proceedings of the 4th International Symposium Reliable Flow of Particulate Solids (RELPOWFLOW IV), Tromsø, Norway, 10–12 June 2008Google Scholar
  20. 20.
    Hidalgo, R.C., Zuriguel, I., Maza, D., Pagonabarraga, I.: Role of particle shape on the stress propagation in granular packings. Phys. Rev. Lett. 103(11), 118001 (2009) Google Scholar
  21. 21.
    Hidalgo, R.C., Kadau, D., Kanzaki, T., Herrmann, H.J.: Granular packings of cohesive elongated particles. Granul. Matter 14(2), 191–196 (2012)Google Scholar
  22. 22.
    Kanzaki, T., Acevedo, M., Zuriguel, I., Pagonabarraga, I., Maza, D., Hidalgo, R.C.: Stress distribution of faceted particles in a silo after its partial discharge. Eur. Phys. J. E Soft Matter Biol. Phys. 34(12), 1–8 (2011)Google Scholar
  23. 23.
    Langston, P.A., Tuzun, U., Heyes, D.M.: Continuous potential discrete particle simulations of stress and velocity fields in hoppers: transition from fluid to granular flow. Chem. Eng. Sci. 49, 1259–1275 (1994)Google Scholar
  24. 24.
    Larsson, S.H., Lestander, T.A., Crompton, D., Melin, S., Sokhansanj, S.: Temperature patterns in large scale Wood pellet silo storage. Appl. Energy 92, 322–327 (2012)CrossRefGoogle Scholar
  25. 25.
    Li, Y., Xu, Y., Jiang, S.: DEM simulations and experiments of pebble flow with monosized spheres. Powder Technol. 193, 312–318 (2009)CrossRefGoogle Scholar
  26. 26.
    Liu, Y., Shen, L., Zheng, Q.: Atomic-scale friction modulation by actuating substrate sub-nanometer vibration. Int. J. Multiscale Comput. Eng. 11(1) (2013)Google Scholar
  27. 27.
    Lozano, C., Lumay, G., Zuriguel, I., Hidalgo, R.C., Garcimartín, A.: Breaking arches with vibrations: the role of defects. Phys. Rev. Lett. 109(6), 68001 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10(4), 235–246 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Miccio, F., Barletta, D., Poletto, M.: Flow properties and arching behavior of biomass particulate solids. Powder Technol. 235, 312–321 (2013)CrossRefGoogle Scholar
  30. 30.
    Owonikoko, A., Berry, R.J., Bradley, M.S.A.: The difficulties of handling biomass and waste: characterisation of extreme shape particles. Bulk Solids Handl. 7/8, 366–371(2011)Google Scholar
  31. 31.
    Peña, A.A., Garcia-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granu. Matter 9, 279–291 (2007)CrossRefzbMATHGoogle Scholar
  32. 32.
    Pournin, L., Liebling, T.M.: From spheres to spheropolyhedra: generalized distinct element methodology and algorithm analysis. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 347–363. Springer, Berlin (2009)Google Scholar
  33. 33.
    Tillemans, H.J., Herrmann, H.J.: Simulating deformations of granular solids under shear. Physica A 217, 261–288 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57, 706–727 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Wong, C., Daniel, M., Rongong, J.: Energy dissipation prediction of particle dampers. J. Sound Vib. 319, 91–118 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Zhu, H., Yu, A., Wu, Y.: Numerical investigation of steady and unsteady state hopper flows. Powder Technol. 170, 125–134 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fernando Alonso-Marroquín
    • 1
  • Álvaro Ramírez-Gómez
    • 2
  • Carlos González-Montellano
    • 2
  • Nigel Balaam
    • 1
  • Dorian A. H. Hanaor
    • 1
  • E. A. Flores-Johnson
    • 1
  • Yixiang Gan
    • 1
  • Shumiao Chen
    • 1
  • Luming Shen
    • 1
  1. 1.School of Civil EngineeringThe University of SydneySydneyAustralia
  2. 2.BIPREE Research GroupUniversidad Politécnica de MadridMadridSpain

Personalised recommendations